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Analysis of aggregation, a worked example:

numbers of ticks on red grouse chicks
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

The statistical aggregation of parasites among hosts is often described empirically by the negative binomial (Poisson-

gamma) distribution. Alternatively, the Poisson-lognormal model can be used. This has the advantage that it can be fitted

as a generalized linear mixed model, thereby quantifying the sources of aggregation in terms of both fixed and random

effects. We give a worked example, assigning aggregation in the distribution of sheep ticks Ixodes ricinus on red grouse

Lagopus lagopus scoticus chicks to temporal (year), spatial (altitude and location), brood and individual effects. Apparent

aggregation among random individuals in random broods fell 8-fold when spatial and temporal effects had been accounted

for.

Key words: analysing aggregation, generalized linear mixed model, Ixodes ricinus, Lagopus lagopus scoticus, Poisson-

lognormal distribution, variance components.



Counts in ecological studies often show non-random,

aggregated statistical distributions. Heterogeneity in

the way parasites are dispersed among hosts, for

example, may be due to genetic, physiological or

behavioural differences among individuals and may

also vary in time and space (Shaw & Dobson, 1995).

In general, to understand and model parasite

aggregation, it is helpful to quantify the contribution

of each separate source of aggregation to the total

aggregation observed.

One approach has been to model the presumed

causes of aggregation and to compare model output

with laboratory and field measures of aggregation

(Grenfell et al. 1995). Another has been to devise

indices that partition parasite aggregation at 2

hierarchical levels in the host population (Boulinier

et al. 1996). A statistical modelling approach to the

problem is to partition variations in counts according

to a set of putative explanatory effects, much as one

partitions variance in the dependent variable in

analysis of variance and covariance. Here, we develop

a method for doing this, using counts of ticks Ixodes
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ricinus on chicks of red grouse Lagopus lagopus

scoticus as an example.

The Poisson distribution is the mathematical

embodiment of randomness and plays a central role

in analyses of counts in ecology. Specifically, if n

parasites occur at random on N hosts, then the

distribution of numbers of parasites per host will be

approximately Poisson. As N becomes very large and

the mean number of parasites per host remains the

same (n, NU¢, with n}N¯µ fixed), the approxi-

mation becomes exact. This is convenient for the

statistical analysis of counts: the Poisson distribution

is a member of the exponential family and so, when

the mean counts are covariate-dependent, their

dependency can be modelled by fitting a generalized

linear model (McCullagh & Nelder, 1989).

Exploratory analysis of counts often begins with

an assessment of the hypothesis of randomness. As

the mean and variance of the Poisson distribution are

equal, this assessment often takes the form of

calculating a variance}mean ratio: values greater

than 1 suggest more variation than random and are

called over-dispersed, aggregated or clumped; values

smaller than 1 suggest less variation than random,

and are called under-dispersed or regular.

Counts that are the outcome of several random

processes may or may not be Poisson. The sum of

several independent Poisson variables remains

Poisson, but a multiple of a Poisson variable is not

Poisson. In nature, therefore, factors that affect
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multiplicative processes such as reproduction are

likely to give rise to aggregated distributions.

Disproving randomness is not an end in itself, but

leads to further analysis. In some situations, this may

be a comparison of the levels of non-randomness in

different populations using aggregation indices.

Here, the choice of index is crucial when comparing

populations with different mean intensities, par-

ticularly when one wants an index that does not vary

with the mean (Pielou, 1977). If so, the index I¯
(V}m)®1 is appropriate for situations in which we

expect the variance V to be proportional to the mean

m. An alternative index is needed when we expect the

variance to increase as the square of the mean. The

index I}m¯ (V®m)}m# is widely used for this

purpose, and is equal to the inverse of the parameter

k from the negative binomial distribution. Thus,

even in the selection of aggregation indices, some

element of modelling and an understanding of the

mechanisms generating the data are inescapable.

In ecology, the most widely used distribution for

the mean that meets the assumption of the variance

being proportional to the square of the mean is the

gamma distribution, which leads to a negative

binomial (Poisson-gamma) distribution for the

counts. Thus many models of host–parasite dy-

namics contain as a measure of aggregation the

parameter k from the negative binomial distribution.

Parasites are typically found aggregated among hosts

(Shaw & Dobson, 1995) and if host mortality

depends on parasite burden, then greater parasite

aggregation (smaller k) leads to greater stability in

host population density.

However, an alternative distribution, namely the

Poisson-lognormal distribution, was introduced into

human epidemiology by Clayton & Kaldor (1987).

This approach is now widely used because it allows

a wider range of modelling tools to be readily applied

(Lawson et al. 1999). These include regression with

both fixed and random effects, and incorporation of

spatial autocorrelation. We therefore base our analy-

sis on the Poisson-lognormal model, with the aim of

partitioning the observed variance among the sources

of heterogeneity.

  

Study area and data collection

The study area, Glas Choille (57° 07« N, 3° 19« W),

is a small glaciated valley about 1 km wide and

2±5 km long, with a stream running through its

length. It lies some 60 km west of Aberdeen, between

400 m and 550 m altitude, just below the upper

altitudinal limit for sheep ticks, which is about 600 m

in this region. The vegetation of Glas Choille,

managed for red grouse by rotational burning,

comprises a mosaic of patches of heather Calluna

vulgaris and other Ericaceae of different ages, juniper

Juniperus communis bushes, and wetter areas com-

prising a mixture of heather, grasses, rushes and

sedges (MacColl et al. 2000).

Red grouse are territorial, monogamous, precocial

ground-nesting game birds which typically lay 5–12

eggs. They leave the nest about a day after hatching,

usually in late May, and form family parties

comprising a pair of adults and their brood of chicks.

The chicks are fully grown after about 3 months,

when broods begin to break up.

Sheep ticks occur as eggs, larvae, nymphs and

adults. Only nymphs and larvae are generally found

on grouse chicks. They remain attached for a few

days before completing their bloodmeal and drop-

ping off. Chicks, however, actively remove ticks

while preening themselves. They reach most of the

body with the beak but groom the head more

awkwardly by foot, and so almost all ticks are found

on the birds’ heads (Duncan et al. 1978). We checked

this by counting ticks on the entire bodies of 18

chicks, and found all ticks on the chicks’ heads (total

176 ticks, range 0–42, mean 9±8 ticks per chick). To

minimize handling time, we routinely counted ticks

only on chicks’ heads.

We caught chicks, with the aid of trained pointing

dogs, from mid-June to early July in 1995, 1996 and

1997. Each chick was caught once, weighed, aged

from primary feather development (Parr, 1975),

ringed, and marked with soft, coloured plastic (PVC

coated nylon) patagial tabs (80–110¬4 mm) (Boag,

Watson & Parr, 1975).

Locations where broods were caught were an

approximate indication only of where chicks might

have picked up their ticks. Broods were seen in

different places on different days, but re-sightings of

broods after capture were often within 100 m of

previous sightings. We therefore recorded a brood’s

location and altitude as at the nearest intersection of

a 100 m grid.

Statistical models

Poisson-lognormal model. The Poisson-lognormal

model was specified as follows. Firstly, we assumed

that, conditional on their respective means µ
ijk

the

number of ticks n
ijk

counted on chick i of brood j in

year k followed a Poisson distribution. Thus

n
ijk

CPoisson(µ
ijk

).

Secondly, we modelled the mean counts µ
ijk

as

being dependent on year, altitude, brood, and

individual chick within brood. As usual for

generalized linear models, the linear dependency was

via a link function of the mean, here a log link

function. The explanatory variables included a

categorical fixed effect α
k

for year k, a continuous

fixed effect x
jk

for altitude of capture, and random

effects e
jk

and ε
ijk

with Normal distributions having

mean zero and variances σ#
e

and σ#
ε for brood and

individual within brood respectively. Thus

log(µ
ijk

)¯α
k
­βx

jk
­e

jk
­ε

ijk
,
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Fig. 1. Average number of ticks per chick in each brood

plotted against the altitude at which the brood was

caught (A), and variance among chicks within a brood

plotted against the mean number of ticks in the brood

(B). The symbols in (A) correspond to the 3 years

(¬, 1995; D, 1996; ­, 1997). In (B) the straight line

corresponds to the Poisson model in which the variance

is equal to the mean. The curved line is the best-fitting

quadratic of the form y¯ax­bx#, which, with a¯1, is

as expected from the Poisson-lognormal and Poisson-

gamma models. The variance-mean relationship was

fitted by iteratively reweighted least squares with

weights (n®1)}f #, where n¯number of chicks per

brood and f¯fitted value from previous iteration,

with estimates of a, b as 1±01 (..¯0±16) and 0±27

(..¯0±05) respectively.

where e
jk

CN(0, σ#
e
), ε

ijk
CN(0, σ#

ε ). The parameters

to be estimated were the effects of year α
k

and

altitude β, together with the variances of the random

effects σ#
e

and σ#
ε .

If σ#
e
and σ#

ε are both zero, then this is a standard

generalized linear model with Poisson errors and a

log link function, in which variation among chicks is

explained by variation in brood-specific covariates.

With the addition of random terms, it becomes a

generalized linear mixed model. If σ#
e
is greater than

zero, this implies that there is additional variation

among brood means that cannot be accounted for by

the covariates or by Poisson (random) variation

about the brood means. Similarly, if σ#
ε is greater

than zero, this implies additional variation in ticks

per chick that cannot be attributed to brood means or

to Poisson variation about the means. Hence, the

estimates of σ#
e

and σ#
ε tell us about the extent and

partitioning of aggregation due to the random effects,

having controlled for the fixed effects of year and

altitude.

A random variable y from a Poisson-lognormal

distribution, with mean µ and lognormal variance σ#,

has variance var(y)¯µ­µ#[exp(σ#)®1]. For the

negative binomial distribution var(y)¯µ­µ#}k.

This suggests that we take [exp(σ#)®1] as an index

of aggregation for the Poisson-lognormal model.

The value we take for σ# depends on the level at

which we wish to look at aggregation: at the level of

the individual, conditional on brood means and fixed

effects, we would take σ#¯σ#
ε , at the level of a

random individual from a random brood but con-

ditional on the fixed effects we would take σ#¯
σ#

e
­σ#

ε .

We investigated the aggregation due to year and

altitude in 2 ways. First, we compared models with

and without year and altitude as fixed effects. The

differences in σ#
e
between versions of the model with

1, 2 or no fixed effects provided estimates of the

brood-level variance due to each fixed effect. Second,

we extended the random effects model by entering

location (grid intersection of capture) as a random

categorical effect and went through the same process

of dropping terms and observing effects. In prin-

ciple, year too could have been entered as a random

effect, but we decided against this because we

considered that the 3 years were not enough reliably

to estimate the variance of a population of years.

The Poisson-lognormal model with 2 fixed effects

makes 3 different distributional assumptions: Nor-

mality of the brood effects ; Normality of the effects

of individuals within broods; Poisson counts given

fixed effects and estimated brood and individual

effects. Each assumption can be assessed by ap-

propriate diagnostic plots (Wilk & Gnanadesikan,

1968). The assumptions of Normality can be assessed

in the usual way using q–q plots. However, the

Poisson assumption is best assessed using a p–p

(probability–probability) plot because the means of

the distributions from which the counts are drawn

are not all equal. Furthermore, the discrete nature of

the Poisson distribution means that a count n
ijk

with

mean µ
ijk

, which is not necessarily an integer, does

not have a unique cumulative distribution function

value associated with it. We overcame this problem

by simulating a continuous distribution based on a

Poisson distribution. This involved taking random

draws r
ijk

from a uniform distribution with lower

and upper bounds Prob(x!n
ijk

) and Prob(x%n
ijk

)

respectively, where x is a random variable from a

Poisson distribution with mean µ
ijk

. The p–p plots

were then constructed in the usual way, by sorting

the r
ijk

into ascending order and plotting the value

with rank s against (s®0±5)}403, the divisor being the

number of chicks studied.

The Poisson-lognormal model was fitted as a

particular case of a generalized linear mixed model
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Table 1. Variance components of random effects in different models

(The Poisson dispersion parameter is fixed at 1 throughout. The aggregation index is [exp(σ#)®1], where σ# is the sum

of the variance components on the same and lower rows. Location and altitude each refer to the grid intersection of

capture.)

Model Fixed effects Random effects Variance component 95% C.I. Aggregation index

1 Mean Brood 1±973 1±467–2±797 8±42

Individual 0±270 0±197–0±392 0±31

2 Mean and year Brood 1±327 0±973–1±919 3±93

Individual 0±269 0±196–0±391 0±31

3 Mean and altitude Brood 1±367 1±003–1±973 4±15

Individual 0±272 0±199–0±396 0±31

4 Mean, year and altitude Brood 0±758 0±541–1±139 1±79

Individual 0±269 0±196–0±391 0±31

5 Mean and year Location 0±931 0±550–1±908 4±21

Brood 0±453 0±262–0±961 1±05

Individual 0±267 0±195–0±388 0±31

6 Mean, year and altitude Location 0±284 0±101–2±492 1±89

Brood 0±512 0±289–1±145 1±14

Individual 0±266 0±195–0±387 0±31

using the algorithm of Schall (1991), which is

available in many statistical packages. We used the

GLMM procedure in Genstat 5.4.1 (Genstat 5

Committee, 1997; Payne & Arnold, 1998) and the

SAS GLIMMIX macro (Littell et al. 1996). As we

were interested in variance as a measure of non-

randomness, the dispersion parameter was fixed at

1±0.

Boulinier indices. We applied the methods described

by Boulinier et al. (1996) to estimate, for each year

separately: (1) the proportion of the total aggregation

due to differences in tick numbers among broods and

(2) the remaining proportion of the total aggregation,

which reflected the average aggregation within

broods.



Summary of tick data

Over the 3 years, a total of 403 chicks were caught in

118 broods at locations ranging in altitude from

403 m to 533 m. The numbers of ticks counted per

chick ranged from 0 to 85, with means of 5±9, 11±1
and 1±2 in the years 1995, 1996 and 1997 respectively.

The relationship between tick burdens and alti-

tude, and the evidence for over-dispersion of ticks

among chicks within broods relative to the Poisson

model, are shown in Fig. 1.

Poisson-lognormal model

The fitted model with year and altitude as fixed

effects indicated large year effects α
k

with estimated

values of 1±13, 2±19, 0±19 (mean ...¯0±25) for

1995, 1996 and 1997 respectively. The estimated

regression coefficient β for altitude was ®0±0219

(..¯0±0029)}m, indicating a range in the con-

tribution of altitude to the linear predictor of

130 m¬0±0219}m¯2±85. There was no suggestion

of an interaction between year and altitude, hence

this term was excluded. No evidence for any other

systematic spatial variation in tick burdens was

detected.

With year and altitude as fixed effects, the

estimated variance component σ#
e

for broods was

estimated to be 3 times as big as the variance

component σ#
ε for individuals nested within broods

(Table 1, model 4). Without fixed effects (model 1),

the corresponding ratio was 7:1. The difference

between these ratios indicates that over half the

variation attributable to broods was due to the effects

of year and altitude. As altitude and year were

measured at the brood level, they can explain only

variation among broods and not variation among

individuals within broods.

The brood-level variance component attributable

to altitude is indicated approximately by subtracting

σ#
e

in model 3 (Table 1) from that in model 1

(1±973®1±367¯0±606), or by subtracting σ#
e

in

model 4 from that in model 2 (1±327®0±758¯
0±569). Such minor discrepancies (0±606 vs 0±569) are

to be expected because of the method of calculation.

An equivalent reckoning for year also provides 2

slightly different values (model 1 vs 2: 0±646; model

3 vs 4: 0±609).

We then entered location (grid intersection of

capture) as a random effect (Table 1, models 5 and

6), with brood nested within location. Some of the

brood-level variance (0±284, model 6) was associated

with location even after controlling for altitude.

There was no suggestion of any location¬year

interaction, which meant that there was no evidence

that the location effects changed with year.

The brood-level aggregation index showed an 8-

fold reduction after temporal and spatial effects had



Analysis of parasite aggregation 567

Fig. 2. Goodness of model fit. Plots of residuals at the 3

different hierarchical levels of the random model with 2

fixed effects : estimated brood effects against standard

Normal quantiles (A); estimated individual effects

against standard Normal quantiles (B); and 3

realizations of the p–p plot for Poisson counts as

described in the text (C) along with the 1:1 line

expected under the Poisson model.

been accounted for (Table 1, models 1 and 5). No

change was to be expected at the individual level,

because none of the explanatory effects was measured

at the individual level.

The residual plots (Fig. 2) indicate that the

Normality assumptions for brood and individual

effects were reasonably good, but that there was

some consistent lack of fit in the assumption that the

counts were Poisson with stated mean. In particular,

they indicate fewer large tick burdens than expected

under the Poisson assumption. This may be due to

burden-dependent effects, such as chicks with large

numbers of ticks suffering heavier mortality, or a

tendency for grooming to remove proportionately

more ticks when burdens are high. However, an

absence of the low burdens that would result from an

interchange of ticks among chicks within broods is

not obvious.

Boulinier indices

Table 2 is directly comparable with Table 1 in

Boulinier et al. (1996), who provided 2 different

types of significance test. According to χ# tests, there

was significant aggregation both within (P!0±005

for χ#
wn

) and among (P!0±005 for χ#
an

) grouse broods

in 1995 and 1996, but not in 1997 when burdens

were very low. In 1995, however, within-brood

aggregation (EJ
i
) fell inside the confidence interval

for the null hypothesis, indicating no significant

within-brood aggregation. Boulinier et al. (1996)

noted a similar discord between the two types of

significance test in their kittiwake Rissa tridactyla

colony ‘D’. In any case, most aggregation in red

grouse was among broods, the proportions (J
k
}J)

being 0±94, 0±86 and 0±69 in 1995, 1996 and 1997.



The Poisson-lognormal model that we fitted allows a

flexible approach to assigning observed aggregation

to different sources of heterogeneity. The model

showed that temporal (year) and spatial (altitude and

location) effects, as well as unexplained aggregation

among and within broods, contributed to the total

aggregation apparent in the sample. Year, altitude

and location were probably surrogates for other

things such as weather, host density and the nature

of the ground. For example, the top of the study area

(550 m) was close to the upper altitudinal limit for

ticks (about 600 m), suggesting that climatic

variations between the top and bottom of the study

area might have influenced tick numbers. Other local

conditions likely to influence ticks include mat (dead

and decomposing vegetation) characteristics (Milne,

1950a, b) ; the density of alternative hosts such as roe

deer Capreolus capreolus and mountain hares Lepus

timidus ; variations in weather over the sampling

period; and inherent differences among broods in

their susceptibility to parasites (Paterson, Wilson &

Pemberton, 1998). Also, broods moved around such

that ‘ location’ and ‘altitude’ were approximations

only of where chicks picked up ticks. More of the

aggregation among broods might have been

explained had a history of past brood locations been

available.

Aggregation has no unique definition. Pielou

(1977) distinguished ‘patchiness’ and ‘crowding’,

measures of aggregation that respectively do not and

do change when random individuals are removed

from the population. It can be helpful to think of

patchiness as aggregation from the host population’s

point of view, and of crowding as aggregation from

the individual parasite’s standpoint. We measured

aggregation in terms of the variance components σ#

from a generalized linear mixed model. We also

defined an index of aggregation [exp(σ#)®1] which

is equivalent to k−" from the negative binomial

model. If the variance was proportional to the square

of the mean, as we assumed, then our measure of

aggregation reflected patchiness. The Boulinier et al.

(1996) indices of aggregation are intended to reflect

crowding. In the event, both methods ascribed much

more aggregation to differences among grouse

broods than to differences among chicks within

broods. The Boulinier et al. (1996) approach,

however, is unable to assign aggregation to particular

causes such as year and altitude.
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Table 2. Aggregation of sheep ticks on grouse chicks, within and among broods, according to the method

of Boulinier et al. (1996)

(J and J
k

respectively measure the total and among-brood aggregation. EJ
i
¯ (J®J

k
) measures the weighted average of

the within-brood aggregation of the ticks among chicks. Chi-square dispersion tests of among-brood aggregation (χ#
an

) and

within-brood aggregation (χ#
wn

) of parasites are given. (n¯ total number of chicks}sample; N¯ total number of broods}
sample; n

p
¯ total number of chicks in broods with at least 2 chicks and with at least 1 parasitized; N

p
¯ total number

of broods with at least 2 chicks and at least 1 parasitized; X
m

¯mean number of ticks}chick (global mean); P¯prevalence

(proportion of broods with at least 1 parasitized chick); (C.I.)¯Confidence intervals at 96% under the null hypothesis

of no within- nor among-brood aggregation.)

Year n N n
p

N
p

X
m

P

J measures Chi-square values*

J
(C.I.)

J
k

(C.I.)

EJ
i

(C.I.) J
k
}J χ#

an
..

an
χ#

wn
..

wn

95 117 38 93 25 5±95 0±79 5±97 5±58 0±39 0±94 7818±26 38 168±17 68

(®0±15, 0±65) (®0±20, 0±40) (®0±03, 0±50)

96 155 41 148 36 11±10 0±98 1±83 1±57 0±26 0±86 572±28 41 417±32 112

(®0±11, 0±43) (®0±17, 0±25) (0±01, 0±25)

97 131 49 102 25 1±15 0±67 1±01 0±70 0±31 0±69 28±47 39 55±73 77

(®0±28, 2±11) (®0±33, 1±75) (®0±42, 1±00)

* Chi-squares were computed with Yates correction. ..
an

¯degrees of freedom for the chi-square among broods

(¯N®1). ..
wn

¯degrees of freedom for the chi-square within broods (¯n
p
®N

p
).

It is instructive to compare red grouse with the

kittiwakes studied by Boulinier et al. (1996). These

sea birds raise their young on small ledges on near-

vertical cliffs, each brood more or less confined to the

nest for about 35 days. Red grouse, however, leave

the nest shortly after hatching. One might expect

exposure to host-seeking ticks in the environment to

vary more within a brood of grouse chicks roaming

the moor than within a nest of kittiwake chicks on a

small ledge. Indeed, within-brood aggregation (EJ
i
,

median 0±14, range 0±04–0±33, samples from 7

colonies) for kittiwakes was lower than that for red

grouse, though the difference was not quite

significant (t
)
¯2±22, P¯0±057). Even so, in both

species most of the aggregation was among rather

than within broods.

The negative binomial distribution is widely used

for empirical description of the dispersion of para-

sites among hosts. This is because it fits many

observed distributions reasonably well and not

because of any evidence that the mathematical

relationships giving rise to the negative binomial

reflect the biological processes giving rise to patterns

of parasite dispersion. The generation of the negative

binomial as a compound distribution with Poisson

variation about means that follow a gamma dis-

tribution is plausible, and will often lead to a

population level description of aggregation that is

perfectly adequate. However, the negative binomial

distribution does not allow ready extension to

additional levels of nested random variation in the

data. Such extensions are possible (Lee & Nelder,

1996, 2000), however, and when more widely

available will provide an alternative class of models

to the Poisson-lognormal that we have used.
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