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Analysis of aggregation, a worked example:
numbers of ticks on red grouse chicks
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SUMMARY

The statistical aggregation of parasites among hosts is often described empirically by the negative binomial (Poisson-
gamma) distribution. Alternatively, the Poisson-lognormal model can be used. This has the advantage that it can be fitted
as a generalized linear mixed model, thereby quantifying the sources of aggregation in terms of both fixed and random
effects. We give a worked example, assigning aggregation in the distribution of sheep ticks Ixodes ricinus on red grouse
Lagopus lagopus scoticus chicks to temporal (year), spatial (altitude and location), brood and individual effects. Apparent
aggregation among random individuals in random broods fell 8-fold when spatial and temporal effects had been accounted

for.

Key words: analysing aggregation, generalized linear mixed model, Ixodes ricinus, Lagopus lagopus scoticus, Poisson-
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INTRODUCTION

Counts in ecological studies often show non-random,
aggregated statistical distributions. Heterogeneity in
the way parasites are dispersed among hosts, for
example, may be due to genetic, physiological or
behavioural differences among individuals and may
also vary in time and space (Shaw & Dobson, 1995).
In general, to understand and model parasite
aggregation, it is helpful to quantify the contribution
of each separate source of aggregation to the total
aggregation observed.

One approach has been to model the presumed
causes of aggregation and to compare model output
with laboratory and field measures of aggregation
(Grenfell et al. 1995). Another has been to devise
indices that partition parasite aggregation at 2
hierarchical levels in the host population (Boulinier
et al. 1996). A statistical modelling approach to the
problem is to partition variations in counts according
to a set of putative explanatory effects, much as one
partitions variance in the dependent variable in
analysis of variance and covariance. Here, we develop
a method for doing this, using counts of ticks Ixodes
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ricinus on chicks of red grouse Lagopus lagopus
scoticus as an example.

The Poisson distribution is the mathematical
embodiment of randomness and plays a central role
in analyses of counts in ecology. Specifically, if =
parasites occur at random on N hosts, then the
distribution of numbers of parasites per host will be
approximately Poisson. As N becomes very large and
the mean number of parasites per host remains the
same (n, N— oo, with n/N = p fixed), the approxi-
mation becomes exact. This is convenient for the
statistical analysis of counts: the Poisson distribution
is a member of the exponential family and so, when
the mean counts are covariate-dependent, their
dependency can be modelled by fitting a generalized
linear model (McCullagh & Nelder, 1989).

Exploratory analysis of counts often begins with
an assessment of the hypothesis of randomness. As
the mean and variance of the Poisson distribution are
equal, this assessment often takes the form of
calculating a variance/mean ratio: values greater
than 1 suggest more variation than random and are
called over-dispersed, aggregated or clumped; values
smaller than 1 suggest less variation than random,
and are called under-dispersed or regular.

Counts that are the outcome of several random
processes may or may not be Poisson. The sum of
independent Poisson variables remains
Poisson, but a multiple of a Poisson variable is not

several

Poisson. In nature, therefore, factors that affect
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multiplicative processes such as reproduction are
likely to give rise to aggregated distributions.

Disproving randomness is not an end in itself, but
leads to further analysis. In some situations, this may
be a comparison of the levels of non-randomness in
different populations using aggregation indices.
Here, the choice of index is crucial when comparing
populations with different mean intensities, par-
ticularly when one wants an index that does not vary
with the mean (Pielou, 1977). If so, the index I =
(V/m)—1 is appropriate for situations in which we
expect the variance I to be proportional to the mean
m. An alternative index is needed when we expect the
variance to increase as the square of the mean. The
index I/m = (V—m)/m* is widely used for this
purpose, and is equal to the inverse of the parameter
k from the negative binomial distribution. Thus,
even in the selection of aggregation indices, some
element of modelling and an understanding of the
mechanisms generating the data are inescapable.

In ecology, the most widely used distribution for
the mean that meets the assumption of the variance
being proportional to the square of the mean is the
gamma distribution, which leads to a negative
binomial (Poisson-gamma) distribution for the
counts. Thus many models of host—parasite dy-
namics contain as a measure of aggregation the
parameter k from the negative binomial distribution.
Parasites are typically found aggregated among hosts
(Shaw & Dobson, 1995) and if host mortality
depends on parasite burden, then greater parasite
aggregation (smaller k) leads to greater stability in
host population density.

However, an alternative distribution, namely the
Poisson-lognormal distribution, was introduced into
human epidemiology by Clayton & Kaldor (1987).
This approach is now widely used because it allows
a wider range of modelling tools to be readily applied
(Lawson et al. 1999). These include regression with
both fixed and random effects, and incorporation of
spatial autocorrelation. We therefore base our analy-
sis on the Poisson-lognormal model, with the aim of
partitioning the observed variance among the sources
of heterogeneity.

MATERIALS AND METHODS

Study area and data collection

The study area, Glas Choille (57° 07" N, 3° 19" W),
is a small glaciated valley about 1 km wide and
2-5km long, with a stream running through its
length. It lies some 60 km west of Aberdeen, between
400 m and 550 m altitude, just below the upper
altitudinal limit for sheep ticks, which is about 600 m
in this region. The vegetation of Glas Choille,
managed for red grouse by rotational burning,
comprises a mosaic of patches of heather Calluna
vulgaris and other Ericaceae of different ages, juniper
FJuniperus communis bushes, and wetter areas com-
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prising a mixture of heather, grasses, rushes and
sedges (MacColl et al. 2000).

Red grouse are territorial, monogamous, precocial
ground-nesting game birds which typically lay 5-12
eggs. They leave the nest about a day after hatching,
usually in late May, and form family parties
comprising a pair of adults and their brood of chicks.
The chicks are fully grown after about 3 months,
when broods begin to break up.

Sheep ticks occur as eggs, larvae, nymphs and
adults. Only nymphs and larvae are generally found
on grouse chicks. They remain attached for a few
days before completing their bloodmeal and drop-
ping off. Chicks, however, actively remove ticks
while preening themselves. They reach most of the
body with the beak but groom the head more
awkwardly by foot, and so almost all ticks are found
on the birds’ heads (Duncan et al. 1978). We checked
this by counting ticks on the entire bodies of 18
chicks, and found all ticks on the chicks’ heads (total
176 ticks, range 0—42, mean 9-8 ticks per chick). To
minimize handling time, we routinely counted ticks
only on chicks’ heads.

We caught chicks, with the aid of trained pointing
dogs, from mid-June to early July in 1995, 1996 and
1997. Each chick was caught once, weighed, aged
from primary feather development (Parr, 1975),
ringed, and marked with soft, coloured plastic (PVC
coated nylon) patagial tabs (80—110 x 4 mm) (Boag,
Watson & Parr, 1975).

Locations where broods were caught were an
approximate indication only of where chicks might
have picked up their ticks. Broods were seen in
different places on different days, but re-sightings of
broods after capture were often within 100 m of
previous sightings. We therefore recorded a brood’s
location and altitude as at the nearest intersection of
a 100 m grid.

Statistical models

Poisson-lognormal model. The Poisson-lognormal
model was specified as follows. Firstly, we assumed
that, conditional on their respective means u,;, the
number of ticks 7, counted on chick ¢ of brood j in
year k followed a Poisson distribution. Thus
1, ~ Poisson(gt;,).

Secondly, we modelled the mean counts f,;, as
being dependent on vyear, altitude, brood, and
individual chick within brood. As
generalized linear models, the linear dependency was
via a link function of the mean, here a log link
function. The explanatory variables included a
categorical fixed effect «, for year k, a continuous
fixed effect x;, for altitude of capture, and random
effects e, and ¢;;, with Normal distributions having
mean zero and variances o2 and o2 for brood and
individual within brood respectively. Thus

usual for
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Fig. 1. Average number of ticks per chick in each brood
plotted against the altitude at which the brood was
caught (A), and variance among chicks within a brood
plotted against the mean number of ticks in the brood
(B). The symbols in (A) correspond to the 3 years
(x,1995; O, 1996; +, 1997). In (B) the straight line
corresponds to the Poisson model in which the variance
is equal to the mean. The curved line is the best-fitting
quadratic of the form y = ax+ bx?, which, with a =1, is
as expected from the Poisson-lognormal and Poisson-
gamma models. The variance-mean relationship was
fitted by iteratively reweighted least squares with
weights (n—1)/f2, where n = number of chicks per
brood and f = fitted value from previous iteration,

with estimates of a, b as 1-:01 (s.e. = 0-16) and 0-27

(s.E. = 0-05) respectively.

where e, ~ N(0, 02), ¢, ~ N(0, 07). The parameters
to be estimated were the effects of year «, and
altitude S, together with the variances of the random
effects o2 and o?.

If o2 and 0?2 are both zero, then this is a standard
generalized linear model with Poisson errors and a
log link function, in which variation among chicks is
explained by variation in brood-specific covariates.
With the addition of random terms, it becomes a
generalized linear mixed model. If g2 is greater than
zero, this implies that there is additional variation
among brood means that cannot be accounted for by
the covariates or by Poisson (random) variation
about the brood means. Similarly, if o2 is greater
than zero, this implies additional variation in ticks
per chick that cannot be attributed to brood means or
to Poisson variation about the means. Hence, the
estimates of o2 and o2 tell us about the extent and
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partitioning of aggregation due to the random effects,
having controlled for the fixed effects of year and
altitude.

A random variable y from a Poisson-lognormal
distribution, with mean g and lognormal variance o2,
has variance var(y) = u+u*[exp(c?)—1]. For the
negative binomial distribution var(y) = u+u*/k.
This suggests that we take [exp(c®)—1] as an index
of aggregation for the Poisson-lognormal model.
The value we take for o® depends on the level at
which we wish to look at aggregation: at the level of
the individual, conditional on brood means and fixed
effects, we would take o® = o2, at the level of a
random individual from a random brood but con-
ditional on the fixed effects we would take o® =
ol +o?l.

We investigated the aggregation due to year and
altitude in 2 ways. First, we compared models with
and without year and altitude as fixed effects. The
differences in o2 between versions of the model with
1, 2 or no fixed effects provided estimates of the
brood-level variance due to each fixed effect. Second,
we extended the random effects model by entering
location (grid intersection of capture) as a random
categorical effect and went through the same process
of dropping terms and observing effects. In prin-
ciple, year too could have been entered as a random
effect, but we decided against this because we
considered that the 3 years were not enough reliably
to estimate the variance of a population of years.

The Poisson-lognormal model with 2 fixed effects
makes 3 different distributional assumptions: Nor-
mality of the brood effects; Normality of the effects
of individuals within broods; Poisson counts given
fixed effects and estimated brood and individual
effects. Each assumption can be assessed by ap-
propriate diagnostic plots (Wilk & Gnanadesikan,
1968). The assumptions of Normality can be assessed
in the usual way using ¢—q plots. However, the
Poisson assumption is best assessed using a p—p
(probability—probability) plot because the means of
the distributions from which the counts are drawn
are not all equal. Furthermore, the discrete nature of
the Poisson distribution means that a count n,;, with
mean ,;,, which is not necessarily an integer, does
not have a unique cumulative distribution function
value associated with it. We overcame this problem
by simulating a continuous distribution based on a
Poisson distribution. This involved taking random
draws 7, from a uniform distribution with lower
and upper bounds Prob(x < n;,) and Prob(x < n,,)
respectively, where x is a random variable from a
Poisson distribution with mean u,,. The p—p plots
were then constructed in the usual way, by sorting
the 7, into ascending order and plotting the value
with rank s against (s —0-5) /403, the divisor being the
number of chicks studied.

The Poisson-lognormal model was fitted as a
particular case of a generalized linear mixed model
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Table 1. Variance components of random effects in different models

(The Poisson dispersion parameter is fixed at 1 throughout. The aggregation index is [exp(c?)— 1], where ¢ is the sum
of the variance components on the same and lower rows. Location and altitude each refer to the grid intersection of

capture.)
Model Fixed effects Random effects Variance component 959, C.I. Aggregation index
1 Mean Brood 1-973 1-467-2-797 842
Individual 0-270 0-197-0-392 0-31
2 Mean and year Brood 1-:327 0-973-1-919 393
Individual 0-269 0-196-0-391 0-31
3 Mean and altitude Brood 1-367 1-:003-1-973 415
Individual 0272 0-199-0-396 0-31
4 Mean, year and altitude Brood 0-758 0-541-1-139 1-79
Individual 0-269 0-196-0-391 0-31
5 Mean and year Location 0-931 0-550-1-908 4-21
Brood 0-453 0-262-0-961 1-05
Individual 0-267 0-195-0-388 0-31
6 Mean, year and altitude Location 0-284 0-101-2-492 1-89
Brood 0-512 0-289-1-145 1-14
Individual 0-266 0-195-0-387 0-31

using the algorithm of Schall (1991), which is
available in many statistical packages. We used the
GLMM procedure in Genstat 5.4.1 (Genstat 5
Committee, 1997; Payne & Arnold, 1998) and the
SAS GLIMMIX macro (Littell et al. 1996). As we
were interested in variance as a measure of non-
randomness, the dispersion parameter was fixed at

1-0.

Boulinier indices. We applied the methods described
by Boulinier et al. (1996) to estimate, for each year
separately: (1) the proportion of the total aggregation
due to differences in tick numbers among broods and
(2) the remaining proportion of the total aggregation,
which reflected the average aggregation within

broods.

RESULTS
Summary of tick data

Over the 3 years, a total of 403 chicks were caught in
118 broods at locations ranging in altitude from
403 m to 533 m. The numbers of ticks counted per
chick ranged from 0 to 85, with means of 5-9, 11-1
and 1-2 in the years 1995, 1996 and 1997 respectively.

The relationship between tick burdens and alti-
tude, and the evidence for over-dispersion of ticks
among chicks within broods relative to the Poisson
model, are shown in Fig. 1.

Poisson-lognormal model

The fitted model with year and altitude as fixed
effects indicated large year effects o, with estimated
values of 1-13, 2-19, 0-19 (mean s.E.D. = 0-25) for
1995, 1996 and 1997 respectively. The estimated
regression coefficient B for altitude was —0-0219
(s.E. = 0-:0029)/m, indicating a range in the con-

tribution of altitude to the linear predictor of
130 m x 0:0219/m = 2-85. There was no suggestion
of an interaction between year and altitude, hence
this term was excluded. No evidence for any other
systematic spatial variation in tick burdens was
detected.

With year and altitude as fixed effects, the
estimated variance component o> for broods was
estimated to be 3 times as big as the variance
component o2 for individuals nested within broods
(Table 1, model 4). Without fixed effects (model 1),
the corresponding ratio was 7:1. The difference
between these ratios indicates that over half the
variation attributable to broods was due to the effects
of year and altitude. As altitude and year were
measured at the brood level, they can explain only
variation among broods and not variation among
individuals within broods.

The brood-level variance component attributable
to altitude is indicated approximately by subtracting
0% in model 3 (Table 1) from that in model 1
(1-973—1-367 = 0-606), or by subtracting o2 in
model 4 from that in model 2 (1-:327—0-758 =
0-569). Such minor discrepancies (0-:606 vs 0-569) are
to be expected because of the method of calculation.
An equivalent reckoning for year also provides 2
slightly different values (model 1 vs 2: 0-646; model
3 ws 4:0609).

We then entered location (grid intersection of
capture) as a random effect (Table 1, models 5 and
6), with brood nested within location. Some of the
brood-level variance (0284, model 6) was associated
with location even after controlling for altitude.
There was no suggestion of any location X year
interaction, which meant that there was no evidence
that the location effects changed with year.

The brood-level aggregation index showed an 8-
fold reduction after temporal and spatial effects had
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Fig. 2. Goodness of model fit. Plots of residuals at the 3
different hierarchical levels of the random model with 2
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fixed effects: estimated brood effects against standard
Normal quantiles (A); estimated individual effects
against standard Normal quantiles (B); and 3
realizations of the p—p plot for Poisson counts as
described in the text (C) along with the 1:1 line
expected under the Poisson model.

been accounted for (Table 1, models 1 and 5). No
change was to be expected at the individual level,
because none of the explanatory effects was measured
at the individual level.

The residual plots (Fig. 2) indicate that the
Normality assumptions for brood and individual
effects were reasonably good, but that there was
some consistent lack of fit in the assumption that the
counts were Poisson with stated mean. In particular,
they indicate fewer large tick burdens than expected
under the Poisson assumption. This may be due to
burden-dependent effects, such as chicks with large
numbers of ticks suffering heavier mortality, or a
tendency for grooming to remove proportionately
more ticks when burdens are high. However, an
absence of the low burdens that would result from an
interchange of ticks among chicks within broods is
not obvious.

Boulinier indices

Table 2 is directly comparable with Table 1 in
Boulinier et al. (1996), who provided 2 different
types of significance test. According to x* tests, there
was significant aggregation both within (P < 0-005
for y2,) and among (P < 0-005 for yZ2,) grouse broods
in 1995 and 1996, but not in 1997 when burdens
were very low. In 1995, however, within-brood
aggregation (EY,) fell inside the confidence interval
for the null hypothesis, indicating no significant

567

within-brood aggregation. Boulinier et al. (1996)
noted a similar discord between the two types of
significance test in their kittiwake Rissa tridactyla
colony ‘D’. In any case, most aggregation in red
grouse was among broods, the proportions (¥,./¥)
being 094, 0-86 and 0-:69 in 1995, 1996 and 1997.

DISCUSSION

The Poisson-lognormal model that we fitted allows a
flexible approach to assigning observed aggregation
to different sources of heterogeneity. The model
showed that temporal (year) and spatial (altitude and
location) effects, as well as unexplained aggregation
among and within broods, contributed to the total
aggregation apparent in the sample. Year, altitude
and location were probably surrogates for other
things such as weather, host density and the nature
of the ground. For example, the top of the study area
(550 m) was close to the upper altitudinal limit for
ticks (about 600 m), suggesting that climatic
variations between the top and bottom of the study
area might have influenced tick numbers. Other local
conditions likely to influence ticks include mat (dead
and decomposing vegetation) characteristics (Milne,
1950a, b); the density of alternative hosts such as roe
deer Capreolus capreolus and mountain hares Lepus
timidus; variations in weather over the sampling
period; and inherent differences among broods in
their susceptibility to parasites (Paterson, Wilson &
Pemberton, 1998). Also, broods moved around such
that ‘location’ and ‘altitude’ were approximations
only of where chicks picked up ticks. More of the
aggregation among broods might have been
explained had a history of past brood locations been
available.

Aggregation has no unique definition. Pielou
(1977) distinguished ‘patchiness’ and ‘crowding’,
measures of aggregation that respectively do not and
do change when random individuals are removed
from the population. It can be helpful to think of
patchiness as aggregation from the host population’s
point of view, and of crowding as aggregation from
the individual parasite’s standpoint. We measured
aggregation in terms of the variance components o>
from a generalized linear mixed model. We also
defined an index of aggregation [exp(o?)— 1] which
is equivalent to k™' from the negative binomial
model. If the variance was proportional to the square
of the mean, as we assumed, then our measure of
aggregation reflected patchiness. The Boulinier et al.
(1996) indices of aggregation are intended to reflect
crowding. In the event, both methods ascribed much
more aggregation to differences among grouse
broods than to differences among chicks within
broods. The Boulinier et al. (1996) approach,
however, is unable to assign aggregation to particular
causes such as year and altitude.
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Table 2. Aggregation of sheep ticks on grouse chicks, within and among broods, according to the method
of Boulinier et al. (1996)

(¥ and ¥, respectively measure the total and among-brood aggregation. EY¥, = (f—,) measures the weighted average of
the within-brood aggregation of the ticks among chicks. Chi-square dispersion tests of among-brood aggregation (y2,) and
within-brood aggregation (y2 ) of parasites are given. (n = total number of chicks/sample; N = total number of broods/
sample; n, = total number of chicks in broods with at least 2 chicks and with at least 1 parasitized; N, = total number
of broods with at least 2 chicks and at least 1 parasitized; X, = mean number of ticks/chick (global mean); P = prevalence

m

(proportion of broods with at least 1 parasitized chick); (C.I.) = Confidence intervals at 96 %, under the null hypothesis

of no within- nor among-brood aggregation.)

¥ measures

Chi-square values*

b %, EY,

Year n N n, N, X, P (CL) (C.I) (C.1) F)T N DF., X.  D.F..
95 117 38 93 25 595 079 597 558 039 094 781826 38 16817 68
(—015,0:65) (—0-20, 0-40) (—0:03, 0-50)

96 155 41 148 36 11-10 098 183 1-57 026 086 57228 41  417-32 112
(—011,043) (—0-17,025) (001, 0-25)

97 131 49 102 25 115 067 101 070 031 069 2847 39 5573 77
(—028,2:11) (=033, 1-75) (=042, 1-00)

* Chi-squares were computed with Yates correction. D.F.

= degrees of freedom for the chi-square among broods

(= N—1). p.F., = degrees of freedom for the chi-square within broods (=n,—N).

It is instructive to compare red grouse with the
kittiwakes studied by Boulinier et al. (1996). These
sea birds raise their young on small ledges on near-
vertical cliffs, each brood more or less confined to the
nest for about 35 days. Red grouse, however, leave
the nest shortly after hatching. One might expect
exposure to host-seeking ticks in the environment to
vary more within a brood of grouse chicks roaming
the moor than within a nest of kittiwake chicks on a
small ledge. Indeed, within-brood aggregation (EY,,
median 0-14, range 0-04-0-33, samples from 7
colonies) for kittiwakes was lower than that for red
grouse, though the difference was not quite
significant (¢, = 2:22, P = 0-057). Even so, in both
species most of the aggregation was among rather
than within broods.

The negative binomial distribution is widely used
for empirical description of the dispersion of para-
sites among hosts. This is because it fits many
observed distributions reasonably well and not
because of any evidence that the mathematical
relationships giving rise to the negative binomial
reflect the biological processes giving rise to patterns
of parasite dispersion. The generation of the negative
binomial as a compound distribution with Poisson
variation about means that follow a gamma dis-
tribution is plausible, and will often lead to a
population level description of aggregation that is
perfectly adequate. However, the negative binomial
distribution does not allow ready extension to
additional levels of nested random variation in the
data. Such extensions are possible (LLee & Nelder,
1996, 2000), however, and when more widely
available will provide an alternative class of models
to the Poisson-lognormal that we have used.
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