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Estimation of local extinction rates when species detectability
covaries with extinction probability: is it a problem?
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Estimating the rate of change of the composition of communities is of direct interest to
address many fundamental and applied questions in ecology. One methodological
problem is that it is hard to detect all the species present in a community. Nichols et al.
presented an estimator of the local extinction rate that takes into account species
probability of detection, but little information is available on its performance. However,
they predicted that if a covariance between species detection probability and local
extinction rate exists in a community, the estimator of local extinction rate complement
would be positively biased.

Here, we show, using simulations over a wide range of parameters that the estimator
performs reasonably well. The bias induced by biological factors appears relatively
weak. The most important factor enhancing the performance (bias and precision) of
the local extinction rate complement estimator is sampling effort. Interestingly, a
potentially important biological bias, such as the covariance effect, improves the
estimation for small sampling efforts, without inducing a supplementary overestimation
when these sampling efforts are high. In the field, all species are rarely detectable so we
recommend the use of such estimators that take into account heterogeneity in species
detection probability when estimating vital rates responsible for community changes.

S. Jenouvrier, Centre d’Etudes Biologiques de Chizé, Centre National de la Recherche
Scientifique, FR-79360 Villiers en Bois, France (jenouvrier@cebc.cnrs.fr). — T. Boulinier,
Centre d’Ecologie Fonctionnelle et Evolutive, CNRS — UMR 5175, Montpellier, France.

Estimating the rate of change of the composition of
communities is of direct interest to address many
fundamental questions in ecology (Rosenzweig and
Clark 1994, Doherty et al. 2003a), but also in relation
to more applied questions linked with the conservation
of biodiversity (Heywood 1995, Yoccoz et al. 2001). One
methodological problem is that it is hard to detect all the
species present in a community at a given location and
time period, and thus it is necessary to account for that
when one wants to infer rates of change in communities
(Nichols et al. 1998a, Gu and Swihart 2004). This is
especially the case if such estimates are used to compare
the dynamics of communities in contrasting situations
(e.g. habitats), as the probability of detecting species may
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be differ according to the particular situations. Higher
apparent local extinction rates could be due to a
confounding effect of the relative species detection
probabilities, which could be linked to their local
abundance (Doherty et al. 2003b, Alpizar-Jara et al.
2004). For instance, in the case of animal communities in
landscapes that are more or less fragmented, results may
be biased if animal species are more or less likely to be
detected in landscapes with different levels of fragmenta-
tion.

Estimators of species richness that take into account
species probability of detection have been available to
ecologists for a long time (Burnham and Overton 1979,
reviewed by Bunge and Fitzpatrick 1993, Colwell and
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Coddington 1994, Nichols and Conroy 1996, Boulinier
et al. 1998, Gotelli and Colwell 2001). Recently, interest
has intensified in the development and evaluation of
estimators to measure turnover of species assemblages,
and Chao et al. (2005) proposed for instance a method
to estimate similarity between communities taking into
account unseen shared species. Nichols et al. (1998a)
proposed estimators for parameters of the rates of
change of communities, and in particular local extinc-
tion and turnover rates. Their approach is based on an
analogy with work at the population level (Williams
et al. 2002), and relies on the robust design of Pollock
(1982), which enables estimation of parameters of
populations when there are heterogeneous probabilities
of detection of individuals. With this approach, the
estimate of the local extinction rate complement (LERC,
or (¢3) in a demographic context) between two primary

sampling period i and j is: <|A)ij = I\A/[jRi /R;, where R; is the
number of species observed at the primary sampling

period i, and M?l is the estimated number of these
species still present at the primary sampling period j
(Nichols et al. 1998a). Secondary sampling periods
within the second primary sampling period enable the
use of a “closed community” estimator (by analogy to a
“closed population”, Williams et al. 2002) to estimate
the number of species detected the previous period

(M?l). This estimator can be chosen from among a
series of estimators that rely on different hypotheses
regarding the way species detection probability may
vary, e.g. among species or time period/occasion (Otis
et al. 1978). Practically, the use of the jackknife
estimator of species richness developed to account for
heterogeneity in the probability of detecting species
(Burnham and Overton 1978, 1979, Boulinier et al.
1998, Nichols et al. 1998a, 1998b) to compute the
estimators of rates of change has been suggested and
can be implemented using an internet based program
(Hines et al. 1999, COMDYN).

One potential problem with the estimator of the local
extinction rate is that it is based on a ratio involving a
sub-sample of the community that may have specific
characteristics, one important characteristic being that
they have been detected at the first primary sampling
period. Nichols et al. (1998a) did not present any study
of the performance of their estimator but stressed that,
as the estimator of the local extinction rate was condi-
tioned on the species that had been detected at the first
primary sampling session, it could be biased towards
lower values if species that are the most detected are also
the most abundant, and thus possibly the most likely not
to go extinct due to environmental and/or demographic
stochasticity. Indeed, the local extinction rate should
depend on the number of individuals as a result of
demographic or environmental stochasticity (Gilpin and
Soulé 1986, Kinney 1997). Nichols et al. (1998a) thus
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predicted that if such a covariance between detection
probability and local extinction rate exists in a commu-
nity, the species more likely to be detected during the
primary sampling session may be the highly detectable
ones, so that the LERC would thus be positively biased.
Indeed, if species are more detectable because they are
more abundant, they will obviously have more chance of
being present and identified during the second primary
session than species not yet detected. This can lead to an
overestimation of both the numbers of shared species
between two sampling sessions (i and j) and the LERC
(P3j)-

Alpizar-Jara et al. (2004) provided strong empirical
evidence that local extinction probability covaries nega-
tively with species detection probability and probably
abundance of individuals within species. They also
suggested an ad hoc weighted estimator to try to reduce
bias in the extinction probability estimator. The differ-
ence between the original estimator and the new
weighted estimator was much smaller than they ex-
pected, suggesting that the bias associated with the
original estimators is not large. However, their empirical
and simulation work was based on the North American
Breeding Bird Survey, and they highlighted that analyses
of different kinds of community-level data will likely
merit additional simulations tailored to other sampling
situations.

Here, we investigate, using simulations over a wide
range of parameters, the bias induced by the relationship
between detection probability and local extinction prob-
ability. The bias appears to be relatively small, and we
show that the most important factor affecting the
performance (bias and precision) of the local extinction
rate complement estimator is the sampling effort. Inter-
estingly, the estimator of the LERC performs actually
slightly better when there is a positive covariance
between the probability of species to be detected and
their probability to “survive”. Such estimators of
extinction and turnover rates based on capture—recap-
ture modelling are thus of much practical value for
analysing data to study the dynamics of biodiversity
when species detection probabilities cannot be assumed
to equal one.

Simulation approach

In order to study the performance of the estimator, we
simulated (1) a virtual community undergoing temporal
change in composition and (2) a sampling of that
community under a robust design (Williams et al.
2002). We simulated a community of N species, in which
species could go extinct between two primary sampling
sessions (PSS). Within each PSS, the community is
considered closed and we could set the number of
secondary sampling occasions. The overall probability
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of detection over a PSS will depend on both the average
species detection probability at each occasion, p, and the
number of secondary sampling occasions (Nichols et al.
1998a). With the sets of parameters we used for each
combination of number of occasions and probability of
detection at each occasion, the probability of detection
at the scale of a PSS varied between 20% and 100% (e.g.
5 occasions and p =0.05 leads to a ppss = 22.6%; 20
occasions and p =0.30 leads to ppss =99.9%). For each
group of species, we could set a local extinction rate
(LER =1—¢).

By analogy with Carothers (1973), we considered two
distinct groups of species in order to investigate the
potential effect of heterogeneity among species on the
performance of the estimator: one group stood for
highly detectable species and the other for less detectable
ones. With a mean species detection probability p and a
coefficient of variation of species detection probability
CV, the respective detectabilities of the two groups at
each secondary sampling occasion were set to: py=
p(1+CV) and pL =p(1 —CV). The higher the CV, the
greater the difference in detection probability is between
the two groups. Differences in the probability of detec-
tion among species may be due to factors such as
variation in abundance and/or morphological and beha-
vioural characteristics. Detectability will also be affected
by sampling methods and effort. We simulated the
pattern of detection/non-detection of each species over
each series of occasions using a Bernoulli drawing of
probability py or pp. We used this simulated community
sampling to estimate the LERC (d}ij). Summary statistics
needed were the number of species detected exactly i
times (f;) over the series of secondary sampling occasions
and the number of species detected on each secondary
sampling occasion i (n;). Computations were implemen-
ted using COMDYN4 (Hines et al. 1999), which is
available online on the internet (http://www.mbr-pwrc.
usgs.gov/software/comdyn.html). We then calculated the
bias and precision after performing a hundred simula-
tions, in order to assess the performance of the LERC
estimator. This bias is estimated as the difference
between the mean of the estimators over the hundred

simulations 4§ij and the fixed value of the LERC ¢;;. The
percent relative bias was calculated as: % bias(cf)ij) =100

(dA>ij — ¢;)/d;. The standard deviation computed from
the hundred simulations represents the precision of the
estimator. To account for both the estimator bias and
precision, we used the root mean square error (rmse):
rmse (§,) = \/biais(qsij)2 +var(fy).

We considered different factors that could affect the
performance of the LERC estimation: (1) the methodol-
ogy used, i.e. the capture—recapture estimation approach
vs the use of simple counts of species, (2) measures of
sampling effort, i.e. the number of secondary occasions
and the probability of detection at each secondary
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occasion, (3) intrinsic features of the community, i.e.
the number of species, the heterogeneity in their detec-
tion probability, and the covariance effect between
species detection probability and extinction probability.
To study the covariance effect between species detection
probabilities and extinction probabilities, we set a low
local extinction rate for the highly detectable group of
species and a high local extinction rate for the less
detectable group of species. For this study, we choose a
total number of species N =50 and CV =0.5.

To compare the importance of these different factors
we used a variance—covariance analysis (ANCOVA,
PROC GLM, SAS Inst.). We could not use the bias,
precision or rmse as a measure of the performance of
an estimator in our ANCOVA analysis because they
are function of the number of simulations. Therefore,
the effects of different factors on the performance
of the LERC estimator was assessed considering I, =
(b, — d)/d| for each simulation run ke[l, 20] as
the dependent variable. We compared the value of the
F-statistics because the degrees of freedom of the
different factors are equal, whereas we could not
use the significance value of the ANCOVA because it
is function of the number of simulations (here 20 for all
treatment). To respect the hypothesis of the ANCOVA,
we used the transformation arcsin(I}’?).

Results

The estimations of LERC, ¢, depended essentially on the
choice of the methodology (CMR or count of species)
and the sampling effort (Table 1). The LERC estimated
with the CMR method is much less biased than based on
the simple counts of species (Table 2). For example,
Table 2 showed that for 20 secondary sampling occasions
and a detection probability at each occasion of 0.05, the
bias of ¢ using the CMR method is —8% and for the
counts of species —33%. In addition, the rmse of
the LERC estimator with the CMR method was lower
than the rmse of the LERC based on the simple counts
of species, indicating that the LERC of the jackknife
estimator performed better.

With both approaches, the sampling effort, and
especially the number of sampling occasions, is the
most important effect that affects the bias of the
estimation of the LERC ¢, (Table 1). Estimates of
LERC are highly negatively biased when the number of
secondary sampling occasions and the detection prob-
ability at each occasion are low (detection probability at
the scale of PSS <50%, Table 2). When the number of
secondary sampling occasions and the detection prob-
ability increase, estimates of LERC ¢ tend towards the
true fixed LERC with a slight overestimation for the
LERC jackknife estimator when the sampling effort is
very high (detection probability at the scale of PSS near
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Table 1. Comparison of the importance of the different factors
affecting the performance of the estimator of local extinction
rate complement (LERC): (1) methodological factors: capture—
recapture approach vs simple ratio of species counts (metho-
dology), sampling effort (number of occasions and detection
probability at each occasion), (2) intrinsic features of the
community (number of species, heterogeneity between species
detection probabilities and covariance effect between species
detection probabilities and extinction probabilities). The effects
of these factors on the performance of the estimator ¢ is
assessed using I, =|(, —d)/d| (see methods). We use the
transformation Xy; =arcsin {vX} to normalize the residual
for the ANCOVA analysis.

Source DF F
Model 16 246.49
Error 3223
Totals corrected 3239
Number of occasions 1 23547
Methodology 1 231.34
Methodology x number of occasions 1 153.26
Methodology x number of species 1 116.39
Methodology x detection probability 1 94.48
Detection probability 1 73.02
Number of occasion x number of species 1 53.06
Number of occasion x heterogeneity between 1 sl
species detection probability
Heterogeneity between species 1 30.57
Detection probability x number of species 1 28.67
Number of species 1 26.15
Covariance effect 1 19.6

100%) (Fig. 1, Table 2). In addition, as expected, the
precision of the estimator of the LERC increases with
the number of secondary sampling occasions and the
probability of detection. For example, for a detection
probability at each secondary occasion of 0.15, the std
(dA)J-ackkmfe) decreases between 0.20 and 0.08 when the
number of secondary occasions increases between 2 and
20. More generally, the rmse of the LERC estimator
decreases when sampling effort increases (Table 2).
Therefore, the estimator performed better (i.e. is less
biased and more precise) when the sampling effort was
increased.

The intrinsic biological effects due to community
characteristics (number of species, the importance of
having some heterogeneity between species and the
covariance effect between species detection probabilities
and extinction probabilities) are weak but visible in their
interaction with the effects of the methodology and
sampling effort (Table 1: interactions). In fact, they are
most visible when the sampling effort is intermediate.
When the sampling effort is low, the performance of the
estimator of the LERC ¢ is worse for the whole range of
intrinsic community effects. However, when effort is
high, the performance is good. For an intermediate
sampling effort, when the number of species increases or/
and the heterogeneity between species decreases and/or
there is a covariance effect, the performance of the
estimator of the LERC ¢ is enhanced.

As predicted by Nichols et al. (1998a), we find that
estimates of LERC were slightly positively biased when
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0.85, with ¢5 =0.95 and ¢y, =0.75 in the cases for which

Table 2. Simulation results for the local extinction rate complement estimator (LERC). The true parameter value were set to ¢

a covariance effect was taken into account. The overall probability of detection over a primary sampling session (PSS) will depend on both the average species detection probability at

each secondary sampling session (SSS), p, and the number of secondary sampling occasions (No.). With a mean species detection probability p and a coefficient of variation of species

detection probability CV

0.5, the respective probabilities of detection of the groups of highly detectable species and less detectable ones were py and py. The number of species in the

community was set to 50. % bias and rmse stand respectively for relative bias and root mean square error (Methods).

¢ based on jackknife with covariance

¢ based on jackknife without covariance

¢ based on count b

PSS level

SSS level

rmse

Y%bias

rmse

%bias

<

rmse

Y%bias
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Complement of local extinction rate

Fig. 1. Estimates of the local extinction rate complement
(LERC) as a function of the effect of the covariance between
species detection probabilities and extinction probabilities for
different sampling situations. The black surface represents the
fixed true value for the complement of local extinction rate, the
white surface represents the value estimated when there is a
positive covariance between detection and extinction probabil-
ities, and the grey surface when there is no covariance between
these variables (species richness =50, coefficient of variation =
0.5, (bnocov =0.85, ¢'c0vHigh =0.95, d)covLow =0.75).

there is a positive covariance between detection prob-
ability and LERC, regardless of the intensity of the
sampling effort (Fig. 1, Table 2). We can note that when
sampling efforts increased, the difference between both
scenarios was reduced. As the covariance did not
influence the LERC precision (e.g. for a detection
probability at each occasion of 0.15 and 5 occasions,
the std (¢) is 0.22 without covariance effect and 0.21
with a covariance effect), local extinction rate estimates
were improved for low and intermediate sampling effort
values when local extinction rate covaried with detection
probability (Fig. 1).

Discussion

Nichols et al. (1998a) stressed that if the probability of
detection and the local extinction rate are both a
function of species abundance, then the estimator of
local extinction rate will be negatively biased. Alpizar-
Jara et al. (2004) noted that there could be a spatial bias
if the number of individuals in a species is related to the
detection of this species at a specific location. They also
showed that covariance between local extinction rate and
detection probability may exist in studies of bird
communities as with the North American Breeding
Bird Survey. We can suppose that communities of similar
species tend to be more affected by the effect of
covariance. In fact, species detectability is likely a
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function of morphological and behavioural character-
istics and because species that are taxonomically close
will have a similar morphology and behaviour, variation
in detection probability in such groups will largely be a
function of abundance.

Here we have shown that covariance between detec-
tion probability and local extinction rate induces a
positive bias in the LERC ¢y. However, as found by
Alpizar-Jara et al. (2004), the effect of covariance in our
study remains small. We showed that the effect of the
covariance tended to be less important when sampling
efforts were intense and that the sampling effort effect is
a very important factor affecting the performance of the
LERC. When the sampling effort is low, however, the
estimator performs badly and estimates are largely
underestimated. But the effect of covariance leads us
to overestimate the LERC in comparison to situations in
which values do not covary. So the biologically induced
bias due to covariance compensates for the bias resulting
from a low sampling effort. Therefore, even when the
biological effect of covariance is present in a studied
community, and despite a sampling effort of low
intensity, estimations of LERC are improved. Conver-
sely, if the effort of sampling is of high intensity, the
difference between situations with and without covar-
iance remains very small. As a result, in order to obtain a
good estimator, it is crucial to increase the sampling
effort even when local extinction rate and detection
probability covary, especially as this effect cannot be
controlled for during sampling.

Studying estimator performance is useful because it
allows the determination of the relative importance of
the different factors affecting the estimator. The results
of this study of LERC performances can be applied to
studies concerning the turnover rate estimator proposed
by Nichols et al. (1998a) as the turnover is the
probability that a species selected at random and at a
given time period j (j being the most recent selection
event) is locally a new species, and it is calculated by
using local extinction rate data in reverse time order
(Nichols et al. 1998a). Similarly, the results presented
concerning temporal changes can be applied by analogy
to spatial analyses (Nichols et al. 1998b). Indeed, the
local extinction rate represents either the probability of
species going extinct between two sampling events or the
probability that a species found in one location is not

found elsewhere (species co-occurrence). For example, to
study the impact of diversity fragmentation, we can
compare species richness and determine the proportion
of species found in two distinct landscapes (Cam et al.
2000). It is also possible to test whether species
composition in the fragmented landscape differs from
the non-fragmented landscape. Indeed, if the probabil-
ities of species co-occurrence do not differ from
one (local extinction rate complement and turn over
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complement), we cannot reject the possibility that both
landscapes present a similar species composition.

We showed that the bias induced by biological factors,
which cannot be controlled for, such as species number,
heterogeneity between the species in detection probabil-
ity and extinction and the covariance effect, is relatively
weak. Interestingly, a biological bias such as the
uncontrollable covariance effect improves the estimation
for small sampling efforts, without inducing a supple-
mentary overestimation when these sampling efforts are
high.

The most important factor affecting the performance
of the estimator of the LERC is sampling effort, which
can be increased by a larger number of occasions and/or
amount of time per occasion, and by the quality of
detection at each occasion. To obtain an acceptable
performance of the LERC jackknife estimator, the
minimum sampling effort must be a combination of a
number of occasions and detection at each occasion
(time and quality) leading to a detection probability at
the scale of the primary sampling session higher than
50%. In this study we highlighted that the number of
occasions is the most important factor that affects the
performance of the LERC estimator. In the case of a low
number of occasions, especially if the community is to be
closed over the secondary sampling sessions, the effort
could be focused on the quality of sampling at each
occasion. For bird communities sampled via points
counts during which all birds seen and heard at a stop
during a fixed time observation period are recorded (e.g.
Breeding Birds Survey), occasions can be either tem-
poral or spatial replicated sampling of the studied
community (Nichols and Conroy 1996). The simulation
results provided in this paper, combined with empirical
information from the literature and a specific pilot study
tailored to the particular situation at hand, should thus
help deciding how to allocate sampling efforts in a
particular situation. A particular consideration has to be
made to the trade off between the number of sampling
occasion and their intensity (e.g. time spent for each
point count), while considering the assumption of
community closure. The assumption of community
closure is important to consider carefully when using
close-community estimators although one has to be
practical; it should notably be noted that in some
instance, the estimators are robust to violations of this
assumption (Kendall 1999) and that in most cases where
simple counts are used to characterize communities,
such an assumption is anyway made implicitly.

In the field, all species are rarely detectable, so we
recommend taking into account the species detection
probability while estimating specie richness and vital
rates responsible for community changes, such as
extinction and turnover rates. It is possible to use other
closed capture models (Otis et al. 1978), or others non-
parametric methods (reviewed by Bunge and Fitzpatrick
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1993, Lee and Chao 1994, Pledger 2000) to estimate
species richness or to estimate similarity of specie
composition (Chao et al. 2005). Several studies have
compared the performance of species richness estimation
methods (Smith and Van-Belle 1984, Palmer 1990, 1991,
Baltanas 1992, Mingoti and Meeden 1992, Colwell and
Coddington 1994, Chazdon et al. 1998), and concluded
that the jackknife estimator generally performs well,
frequently better than the other estimators. If no
capture—recapture models fit the data, Nichols et al.
(1998a) recommend the use of the robust jackknife
estimator anyway. The approach to estimate species
richness and vital rates responsible for spatial and/or
temporal community changes proposed by Nichols et al.
(1998a, 1998b), and their variance and confidences
intervals, provides a simple methodological framework
for studies of ecological communities.
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