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Estimating the rate of change of the composition of communities is of direct interest to
address many fundamental and applied questions in ecology. One methodological
problem is that it is hard to detect all the species present in a community. Nichols et al.
presented an estimator of the local extinction rate that takes into account species
probability of detection, but little information is available on its performance. However,
they predicted that if a covariance between species detection probability and local
extinction rate exists in a community, the estimator of local extinction rate complement
would be positively biased.

Here, we show, using simulations over a wide range of parameters that the estimator
performs reasonably well. The bias induced by biological factors appears relatively
weak. The most important factor enhancing the performance (bias and precision) of
the local extinction rate complement estimator is sampling effort. Interestingly, a
potentially important biological bias, such as the covariance effect, improves the
estimation for small sampling efforts, without inducing a supplementary overestimation
when these sampling efforts are high. In the field, all species are rarely detectable so we
recommend the use of such estimators that take into account heterogeneity in species
detection probability when estimating vital rates responsible for community changes.
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Estimating the rate of change of the composition of

communities is of direct interest to address many

fundamental questions in ecology (Rosenzweig and

Clark 1994, Doherty et al. 2003a), but also in relation

to more applied questions linked with the conservation

of biodiversity (Heywood 1995, Yoccoz et al. 2001). One

methodological problem is that it is hard to detect all the

species present in a community at a given location and

time period, and thus it is necessary to account for that

when one wants to infer rates of change in communities

(Nichols et al. 1998a, Gu and Swihart 2004). This is

especially the case if such estimates are used to compare

the dynamics of communities in contrasting situations

(e.g. habitats), as the probability of detecting species may

be differ according to the particular situations. Higher

apparent local extinction rates could be due to a

confounding effect of the relative species detection

probabilities, which could be linked to their local

abundance (Doherty et al. 2003b, Alpizar-Jara et al.

2004). For instance, in the case of animal communities in

landscapes that are more or less fragmented, results may

be biased if animal species are more or less likely to be

detected in landscapes with different levels of fragmenta-

tion.

Estimators of species richness that take into account

species probability of detection have been available to

ecologists for a long time (Burnham and Overton 1979,
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Coddington 1994, Nichols and Conroy 1996, Boulinier

et al. 1998, Gotelli and Colwell 2001). Recently, interest

has intensified in the development and evaluation of

estimators to measure turnover of species assemblages,

and Chao et al. (2005) proposed for instance a method

to estimate similarity between communities taking into

account unseen shared species. Nichols et al. (1998a)

proposed estimators for parameters of the rates of

change of communities, and in particular local extinc-

tion and turnover rates. Their approach is based on an

analogy with work at the population level (Williams

et al. 2002), and relies on the robust design of Pollock

(1982), which enables estimation of parameters of

populations when there are heterogeneous probabilities

of detection of individuals. With this approach, the

estimate of the local extinction rate complement (LERC,

or (fij) in a demographic context) between two primary

sampling period i and j is: f̂ij�M̂
Ri

j =Ri; where Ri is the

number of species observed at the primary sampling

period i, and M̂
Ri

j is the estimated number of these

species still present at the primary sampling period j

(Nichols et al. 1998a). Secondary sampling periods

within the second primary sampling period enable the

use of a ‘‘closed community’’ estimator (by analogy to a

‘‘closed population’’, Williams et al. 2002) to estimate

the number of species detected the previous period

(/M̂
Ri

j ): This estimator can be chosen from among a

series of estimators that rely on different hypotheses

regarding the way species detection probability may

vary, e.g. among species or time period/occasion (Otis

et al. 1978). Practically, the use of the jackknife

estimator of species richness developed to account for

heterogeneity in the probability of detecting species

(Burnham and Overton 1978, 1979, Boulinier et al.

1998, Nichols et al. 1998a, 1998b) to compute the

estimators of rates of change has been suggested and

can be implemented using an internet based program

(Hines et al. 1999, COMDYN).

One potential problem with the estimator of the local

extinction rate is that it is based on a ratio involving a

sub-sample of the community that may have specific

characteristics, one important characteristic being that

they have been detected at the first primary sampling

period. Nichols et al. (1998a) did not present any study

of the performance of their estimator but stressed that,

as the estimator of the local extinction rate was condi-

tioned on the species that had been detected at the first

primary sampling session, it could be biased towards

lower values if species that are the most detected are also

the most abundant, and thus possibly the most likely not

to go extinct due to environmental and/or demographic

stochasticity. Indeed, the local extinction rate should

depend on the number of individuals as a result of

demographic or environmental stochasticity (Gilpin and

Soulé 1986, Kinney 1997). Nichols et al. (1998a) thus

predicted that if such a covariance between detection

probability and local extinction rate exists in a commu-

nity, the species more likely to be detected during the

primary sampling session may be the highly detectable

ones, so that the LERC would thus be positively biased.

Indeed, if species are more detectable because they are

more abundant, they will obviously have more chance of

being present and identified during the second primary

session than species not yet detected. This can lead to an

overestimation of both the numbers of shared species

between two sampling sessions (i and j) and the LERC

(fij).

Alpizar-Jara et al. (2004) provided strong empirical

evidence that local extinction probability covaries nega-

tively with species detection probability and probably

abundance of individuals within species. They also

suggested an ad hoc weighted estimator to try to reduce

bias in the extinction probability estimator. The differ-

ence between the original estimator and the new

weighted estimator was much smaller than they ex-

pected, suggesting that the bias associated with the

original estimators is not large. However, their empirical

and simulation work was based on the North American

Breeding Bird Survey, and they highlighted that analyses

of different kinds of community-level data will likely

merit additional simulations tailored to other sampling

situations.

Here, we investigate, using simulations over a wide

range of parameters, the bias induced by the relationship

between detection probability and local extinction prob-

ability. The bias appears to be relatively small, and we

show that the most important factor affecting the

performance (bias and precision) of the local extinction

rate complement estimator is the sampling effort. Inter-

estingly, the estimator of the LERC performs actually

slightly better when there is a positive covariance

between the probability of species to be detected and

their probability to ‘‘survive’’. Such estimators of

extinction and turnover rates based on capture�/recap-

ture modelling are thus of much practical value for

analysing data to study the dynamics of biodiversity

when species detection probabilities cannot be assumed

to equal one.

Simulation approach

In order to study the performance of the estimator, we

simulated (1) a virtual community undergoing temporal

change in composition and (2) a sampling of that

community under a robust design (Williams et al.

2002). We simulated a community of N species, in which

species could go extinct between two primary sampling

sessions (PSS). Within each PSS, the community is

considered closed and we could set the number of

secondary sampling occasions. The overall probability
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of detection over a PSS will depend on both the average

species detection probability at each occasion, p, and the

number of secondary sampling occasions (Nichols et al.

1998a). With the sets of parameters we used for each

combination of number of occasions and probability of

detection at each occasion, the probability of detection

at the scale of a PSS varied between 20% and 100% (e.g.

5 occasions and p�/0.05 leads to a pPSS�/ 22.6%; 20

occasions and p�/0.30 leads to pPSS�/99.9%). For each

group of species, we could set a local extinction rate

(LER�/1�/f).

By analogy with Carothers (1973), we considered two

distinct groups of species in order to investigate the

potential effect of heterogeneity among species on the

performance of the estimator: one group stood for

highly detectable species and the other for less detectable

ones. With a mean species detection probability p and a

coefficient of variation of species detection probability

CV, the respective detectabilities of the two groups at

each secondary sampling occasion were set to: pH�/

p(1�/CV) and pL�/p(1�/CV). The higher the CV, the

greater the difference in detection probability is between

the two groups. Differences in the probability of detec-

tion among species may be due to factors such as

variation in abundance and/or morphological and beha-

vioural characteristics. Detectability will also be affected

by sampling methods and effort. We simulated the

pattern of detection/non-detection of each species over

each series of occasions using a Bernoulli drawing of

probability pH or pL. We used this simulated community

sampling to estimate the LERC (/f̂ij). Summary statistics

needed were the number of species detected exactly i

times (fi) over the series of secondary sampling occasions

and the number of species detected on each secondary

sampling occasion i (ni). Computations were implemen-

ted using COMDYN4 (Hines et al. 1999), which is

available online on the internet (http://www.mbr-pwrc.

usgs.gov/software/comdyn.html). We then calculated the

bias and precision after performing a hundred simula-

tions, in order to assess the performance of the LERC

estimator. This bias is estimated as the difference

between the mean of the estimators over the hundred

simulations ¯̂fij and the fixed value of the LERC fij. The

percent relative bias was calculated as: % bias(/f̂ij)�/100

( ¯̂fij�fij)=fij: The standard deviation computed from

the hundred simulations represents the precision of the

estimator. To account for both the estimator bias and

precision, we used the root mean square error (rmse):

rmse (f̂ij)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
biais(f̂ij)

2�var(f̂ij)
q

:

We considered different factors that could affect the

performance of the LERC estimation: (1) the methodol-

ogy used, i.e. the capture�/recapture estimation approach

vs the use of simple counts of species, (2) measures of

sampling effort, i.e. the number of secondary occasions

and the probability of detection at each secondary

occasion, (3) intrinsic features of the community, i.e.

the number of species, the heterogeneity in their detec-

tion probability, and the covariance effect between

species detection probability and extinction probability.

To study the covariance effect between species detection

probabilities and extinction probabilities, we set a low

local extinction rate for the highly detectable group of

species and a high local extinction rate for the less

detectable group of species. For this study, we choose a

total number of species N�/50 and CV�/0.5.

To compare the importance of these different factors

we used a variance�/covariance analysis (ANCOVA,

PROC GLM, SAS Inst.). We could not use the bias,

precision or rmse as a measure of the performance of

an estimator in our ANCOVA analysis because they

are function of the number of simulations. Therefore,

the effects of different factors on the performance

of the LERC estimator was assessed considering Ik�
½(f̂k�f)=f½ for each simulation run k �/[1, 20] as

the dependent variable. We compared the value of the

F-statistics because the degrees of freedom of the

different factors are equal, whereas we could not

use the significance value of the ANCOVA because it

is function of the number of simulations (here 20 for all

treatment). To respect the hypothesis of the ANCOVA,

we used the transformation arcsin(Ii
1/2).

Results

The estimations of LERC, f̂; depended essentially on the

choice of the methodology (CMR or count of species)

and the sampling effort (Table 1). The LERC estimated

with the CMR method is much less biased than based on

the simple counts of species (Table 2). For example,

Table 2 showed that for 20 secondary sampling occasions

and a detection probability at each occasion of 0.05, the

bias of f̂ using the CMR method is �/8% and for the

counts of species �/33%. In addition, the rmse of

the LERC estimator with the CMR method was lower

than the rmse of the LERC based on the simple counts

of species, indicating that the LERC of the jackknife

estimator performed better.

With both approaches, the sampling effort, and

especially the number of sampling occasions, is the

most important effect that affects the bias of the

estimation of the LERC f̂; (Table 1). Estimates of

LERC are highly negatively biased when the number of

secondary sampling occasions and the detection prob-

ability at each occasion are low (detection probability at

the scale of PSSB/50%, Table 2). When the number of

secondary sampling occasions and the detection prob-

ability increase, estimates of LERC f̂ tend towards the

true fixed LERC with a slight overestimation for the

LERC jackknife estimator when the sampling effort is

very high (detection probability at the scale of PSS near
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100%) (Fig. 1, Table 2). In addition, as expected, the

precision of the estimator of the LERC increases with

the number of secondary sampling occasions and the

probability of detection. For example, for a detection

probability at each secondary occasion of 0.15, the std

(f̂jackknife) decreases between 0.20 and 0.08 when the

number of secondary occasions increases between 2 and

20. More generally, the rmse of the LERC estimator

decreases when sampling effort increases (Table 2).

Therefore, the estimator performed better (i.e. is less

biased and more precise) when the sampling effort was

increased.

The intrinsic biological effects due to community

characteristics (number of species, the importance of

having some heterogeneity between species and the

covariance effect between species detection probabilities

and extinction probabilities) are weak but visible in their

interaction with the effects of the methodology and

sampling effort (Table 1: interactions). In fact, they are

most visible when the sampling effort is intermediate.

When the sampling effort is low, the performance of the

estimator of the LERC f̂ is worse for the whole range of

intrinsic community effects. However, when effort is

high, the performance is good. For an intermediate

sampling effort, when the number of species increases or/

and the heterogeneity between species decreases and/or

there is a covariance effect, the performance of the

estimator of the LERC f̂ is enhanced.

As predicted by Nichols et al. (1998a), we find that

estimates of LERC were slightly positively biased when

Table 1. Comparison of the importance of the different factors
affecting the performance of the estimator of local extinction
rate complement (LERC): (1) methodological factors: capture�/

recapture approach vs simple ratio of species counts (metho-
dology), sampling effort (number of occasions and detection
probability at each occasion), (2) intrinsic features of the
community (number of species, heterogeneity between species
detection probabilities and covariance effect between species
detection probabilities and extinction probabilities). The effects

of these factors on the performance of the estimator f̂ is

assessed using Ik�½(f̂k�f)=f½ (see methods). We use the

transformation XTi�arcsin f
ffiffiffiffi
X

p
g to normalize the residual

for the ANCOVA analysis.

Source DF F

Model 16 246.49
Error 3223
Totals corrected 3239

Number of occasions 1 235.47
Methodology 1 231.34
Methodology�/number of occasions 1 153.26
Methodology�/number of species 1 116.39
Methodology�/detection probability 1 94.48
Detection probability 1 73.02
Number of occasion�/number of species 1 53.06
Number of occasion�/heterogeneity between

species detection probability
1 51

Heterogeneity between species 1 30.57
Detection probability�/number of species 1 28.67

Number of species 1 26.15
Covariance effect 1 19.6
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there is a positive covariance between detection prob-

ability and LERC, regardless of the intensity of the

sampling effort (Fig. 1, Table 2). We can note that when

sampling efforts increased, the difference between both

scenarios was reduced. As the covariance did not

influence the LERC precision (e.g. for a detection

probability at each occasion of 0.15 and 5 occasions,

the std (/f̂) is 0.22 without covariance effect and 0.21

with a covariance effect), local extinction rate estimates

were improved for low and intermediate sampling effort

values when local extinction rate covaried with detection

probability (Fig. 1).

Discussion

Nichols et al. (1998a) stressed that if the probability of

detection and the local extinction rate are both a

function of species abundance, then the estimator of

local extinction rate will be negatively biased. Alpizar-

Jara et al. (2004) noted that there could be a spatial bias

if the number of individuals in a species is related to the

detection of this species at a specific location. They also

showed that covariance between local extinction rate and

detection probability may exist in studies of bird

communities as with the North American Breeding

Bird Survey. We can suppose that communities of similar

species tend to be more affected by the effect of

covariance. In fact, species detectability is likely a

function of morphological and behavioural character-

istics and because species that are taxonomically close

will have a similar morphology and behaviour, variation

in detection probability in such groups will largely be a

function of abundance.

Here we have shown that covariance between detec-

tion probability and local extinction rate induces a

positive bias in the LERC fij. However, as found by

Alpizar-Jara et al. (2004), the effect of covariance in our

study remains small. We showed that the effect of the

covariance tended to be less important when sampling

efforts were intense and that the sampling effort effect is

a very important factor affecting the performance of the

LERC. When the sampling effort is low, however, the

estimator performs badly and estimates are largely

underestimated. But the effect of covariance leads us

to overestimate the LERC in comparison to situations in

which values do not covary. So the biologically induced

bias due to covariance compensates for the bias resulting

from a low sampling effort. Therefore, even when the

biological effect of covariance is present in a studied

community, and despite a sampling effort of low

intensity, estimations of LERC are improved. Conver-

sely, if the effort of sampling is of high intensity, the

difference between situations with and without covar-

iance remains very small. As a result, in order to obtain a

good estimator, it is crucial to increase the sampling

effort even when local extinction rate and detection

probability covary, especially as this effect cannot be

controlled for during sampling.

Studying estimator performance is useful because it

allows the determination of the relative importance of

the different factors affecting the estimator. The results

of this study of LERC performances can be applied to

studies concerning the turnover rate estimator proposed

by Nichols et al. (1998a) as the turnover is the

probability that a species selected at random and at a

given time period j (j being the most recent selection

event) is locally a new species, and it is calculated by

using local extinction rate data in reverse time order

(Nichols et al. 1998a). Similarly, the results presented

concerning temporal changes can be applied by analogy

to spatial analyses (Nichols et al. 1998b). Indeed, the

local extinction rate represents either the probability of

species going extinct between two sampling events or the

probability that a species found in one location is not

found elsewhere (species co-occurrence). For example, to

study the impact of diversity fragmentation, we can

compare species richness and determine the proportion

of species found in two distinct landscapes (Cam et al.

2000). It is also possible to test whether species

composition in the fragmented landscape differs from

the non-fragmented landscape. Indeed, if the probabil-

ities of species co-occurrence do not differ from

one (local extinction rate complement and turn over

Fig. 1. Estimates of the local extinction rate complement
(LERC) as a function of the effect of the covariance between
species detection probabilities and extinction probabilities for
different sampling situations. The black surface represents the
fixed true value for the complement of local extinction rate, the
white surface represents the value estimated when there is a
positive covariance between detection and extinction probabil-
ities, and the grey surface when there is no covariance between
these variables (species richness�/50, coefficient of variation�/

0.5, fnocov�/0.85, fcovHigh�/0.95, fcovLow�/0.75).
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complement), we cannot reject the possibility that both

landscapes present a similar species composition.

We showed that the bias induced by biological factors,

which cannot be controlled for, such as species number,

heterogeneity between the species in detection probabil-

ity and extinction and the covariance effect, is relatively

weak. Interestingly, a biological bias such as the

uncontrollable covariance effect improves the estimation

for small sampling efforts, without inducing a supple-

mentary overestimation when these sampling efforts are

high.

The most important factor affecting the performance

of the estimator of the LERC is sampling effort, which

can be increased by a larger number of occasions and/or

amount of time per occasion, and by the quality of

detection at each occasion. To obtain an acceptable

performance of the LERC jackknife estimator, the

minimum sampling effort must be a combination of a

number of occasions and detection at each occasion

(time and quality) leading to a detection probability at

the scale of the primary sampling session higher than

50%. In this study we highlighted that the number of

occasions is the most important factor that affects the

performance of the LERC estimator. In the case of a low

number of occasions, especially if the community is to be

closed over the secondary sampling sessions, the effort

could be focused on the quality of sampling at each

occasion. For bird communities sampled via points

counts during which all birds seen and heard at a stop

during a fixed time observation period are recorded (e.g.

Breeding Birds Survey), occasions can be either tem-

poral or spatial replicated sampling of the studied

community (Nichols and Conroy 1996). The simulation

results provided in this paper, combined with empirical

information from the literature and a specific pilot study

tailored to the particular situation at hand, should thus

help deciding how to allocate sampling efforts in a

particular situation. A particular consideration has to be

made to the trade off between the number of sampling

occasion and their intensity (e.g. time spent for each

point count), while considering the assumption of

community closure. The assumption of community

closure is important to consider carefully when using

close-community estimators although one has to be

practical; it should notably be noted that in some

instance, the estimators are robust to violations of this

assumption (Kendall 1999) and that in most cases where

simple counts are used to characterize communities,

such an assumption is anyway made implicitly.

In the field, all species are rarely detectable, so we

recommend taking into account the species detection

probability while estimating specie richness and vital

rates responsible for community changes, such as

extinction and turnover rates. It is possible to use other

closed capture models (Otis et al. 1978), or others non-

parametric methods (reviewed by Bunge and Fitzpatrick

1993, Lee and Chao 1994, Pledger 2000) to estimate

species richness or to estimate similarity of specie

composition (Chao et al. 2005). Several studies have

compared the performance of species richness estimation

methods (Smith and Van-Belle 1984, Palmer 1990, 1991,

Baltanas 1992, Mingoti and Meeden 1992, Colwell and

Coddington 1994, Chazdon et al. 1998), and concluded

that the jackknife estimator generally performs well,

frequently better than the other estimators. If no

capture�/recapture models fit the data, Nichols et al.

(1998a) recommend the use of the robust jackknife

estimator anyway. The approach to estimate species

richness and vital rates responsible for spatial and/or

temporal community changes proposed by Nichols et al.

(1998a, 1998b), and their variance and confidences

intervals, provides a simple methodological framework

for studies of ecological communities.
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