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Colonial seabirds often breed in large aggregations. These individuals can be exposed to parasitism by the

tick Ixodes uriae, but little is known about the circulation of pathogens carried by this ectoparasite,

including Lyme disease Borrelia. Here we investigated the prevalence of antibodies (Ab) against Borrelia

burgdorferi sensu lato in seabird species sampled at eight locations across the North Atlantic. Using enzyme-

linked immunosorbent assay tests, we found that the prevalence of anti-Borrelia Ab in adult seabirds was

39.6% on average (over 444 individuals), but that it varied among colonies and species. Common

guillemots showed higher seroprevalence (77.1%G5.9) than black-legged kittiwakes (18.6%G6.7) and

Atlantic puffins (22.6%G6.3). Immunoblot-banding patterns of positive individuals, reflecting the

variability of Borrelia antigens against which Ab were produced, also differed among locations and species,

and did not tightly match the prevalence of Borrelia phylogroups previously identified in ticks collected

from the same host individuals. These results represent the first report of the widespread prevalence of Ab

against Borrelia within an assemblage of seabird species and demonstrate that Borrelia is an integrated

aspect in the interaction between seabirds and ticks. More detailed studies on the dynamics of Borrelia

within and among seabird species at different spatial scales will now be required to better understand the

implications of this interaction for seabird ecology and the epidemiology of Lyme disease.
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1. INTRODUCTION

Recent outbreaks of avian influenza (Normile 2006; Olsen

et al. 2006) and West Nile viruses (Rappole & Hubalek

2003; Gerhardt 2006) have highlighted the role that

birds can play in the ecology of zoonotic diseases. They

have also underlined the complexity of natural cycles

of bird-borne (re-)emerging diseases; a multidisciplinary

approach—ecology, epidemiology, host–parasite coevolu-

tion—is required in order to identify the underlying causes

and control their spread (Daszak et al. 2000; Galvani

2003). Owing to their frequent infection by the members

of the bacterial complex Borrelia burgdorferi sensu lato,

there is a growing interest in the role played by birds as

reservoir hosts to Lyme borreliosis (LB), the most

common vector-borne zoonosis in temperate regions of

the Northern Hemisphere. Indeed, Tsao et al. (2004)

suggested that non-mouse hosts strongly participate in the

natural cycle of LB and a number of studies have

examined the reservoir competence of natural bird

populations to Lyme disease bacteria (Kurtenbach et al.

1998; Richter et al. 2000; Gryczynska et al. 2002; Kaiser

et al. 2002; Ginsberg et al. 2005). Several recent surveys

have also investigated migratory land birds as potential

long-distance dispersers of ticks and bacteria (Ishiguro
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et al. 2005; Comstedt et al. 2006; Poupon et al. 2006).

Birds are thus not only confined to being a reservoir for

LB but might also be key hosts affecting the spatial

distribution and genetic structure of B. burgdorferi s. l.

Host diversity and host-associated selection driven by

the immune system are likely to greatly affect the spatio-

temporal structure of bird-borne zoonotic agents such as

LB spirochetes (Kurtenbach et al. 2002). For example,

high vertebrate species diversity in local patches has been

suggested to decrease tick infection rates by Borrelia via a

‘dilution effect’ (Ostfeld & Keesing 2000; LoGiudice et al.

2003). Under this model, different vertebrate species

have different reservoir capacities for Borrelia spp. Species

with low reservoir competence act as hosts to the local

tick vector and thus dilute the high reservoir competence

of other local host species. Given the vast number of

vertebrate species that may act as reservoirs to LB

spirochetes (e.g. Pal & Fikrig 2003), a complete under-

standing of the epidemiology of this disease requires

knowledge about the relative role of different local

species in the maintenance, spread and divergence of this

pathogen in natural populations.

More than a decade ago, Olsen et al. (1993, 1995)

suggested a role for seabirds in a global transmission

cycle of LB. Although most human cases of LB are

connected to the terrestrial transmission cycle, infections

through exposure to Ixodes uriae, a seabird tick, have

been described (Gylfe et al. 1999). In addition, current
This journal is q 2008 The Royal Society
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Figure 1. Immunoblot analyses of Ab to B. burgdorferi s. l. antigens in plasma sampled from the three studied seabirds species
(CG, common guillemots; KT, black-legged kittiwakes; PF, Atlantic puffins) in two Icelandic colonies (GRIM, Grimsey;
SKRU, Skrudur). Serum from a human patient with LB was used as a positive control (red arrows). The location of the selected
B. burgdorferi s. l. antigens (Borrelia garinii Osp C, B. b. VlsE, p100, p58, p43, p39, p30, 22 kD Osp C, p17, p14) was determined
using the positive control and the banding map provided with the kit.
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information suggests an interaction between the two

transmission cycles, although the nature and frequency

of these exchanges have yet to be determined. Several

studies reported the circulation of Borrelia spp. in diffe-

rent seabird species and in the tick I. uriae, the only

known vector of Borrelia spp. in the marine cycle

(Olsen et al. 1993, 1995; Bunikis et al. 1996; Gauthier-Clerc

et al. 1999; Gylfe et al. 1999; Gasparini et al. 2001;

Smith et al. 2006). Ixodes uriae is a common nest-dwelling

ectoparasite of seabirds. During each of its three active

stages, this tick takes a single, long blood meal (4–10 days;

McCoy et al. 2002) on its bird host when the transmission

of Borrelia (and other pathogenic agents) can occur.

Although the ecology of I. uriae and its impact on bird

populations start to be relatively well described (e.g.

Boulinier et al. 2001; McCoy et al. 2002), little is known

about the circulation of Borrelia spp. among tick popula-

tions and consequently the proportion of seabirds exposed

toBorrelia among and within colonies. To better understand

the mechanisms driving B. burgdorferi s. l. variability and

the potential epidemiological role played by different

seabird species, we analysed the prevalence of antibodies

(Ab) against LB Borrelia spp. in three common North

Atlantic seabird species in eight different colonies. Popu-

lation genetic studies of the tick vector collected from

different colonies and numerous seabird hosts have

suggested that tick populations are structured in space

and among host species within mixed colonies, forming

distinct host races (McCoy et al. 2001, 2005). This structure

could have important implications for the circulation of

Borrelia spp. In particular, a recent study has shown that

infected I. uriae are widely distributed across the North

Atlantic, but that the prevalence and diversity of LB
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Borrelia spp. vary among tick host races both within and

among colonies (Duneau et al. 2008). The potential role

of seabirds in the maintenance of these patterns is

unknown, but could be partially linked to interspecific

variability in host competence to LB spirochetes in general

or to certain species within the complex (Pal & Fikrig 2003).

Here, we compare spatial and host-associated differences

in seroprevalence and immunoblot-banding patterns to

examine these aspects. We discuss our results with respect

to their consequences for our understanding of the dyna-

mics of host–parasite interactions and their epidemiolo-

gical implications for the maintenance and diversification

of LB spirochetes.
2. MATERIAL AND METHODS
(a) Blood sampling

Samples were collected from eight colonies across the North

Atlantic. Approximately 30 adult birds of three seabird

species (the black-legged kittiwake (KT) Rissa tridactyla,

the Atlantic puffin (PF) Fratercula arctica and the common

guillemot (CG) Uria aalge) were captured and sampled for

blood at each location where possible. In Iceland, all three

species were sampled in 2003 on the islands of Skrudur

(64854 0 N, 13838 0 W) and Grimsey (66833 0 N, 18800 0 W;

figures 1 and 2). In this country, we also sampled birds from

the colonies of Hrolfsklettur (65823 0 N, 22854 0 W) and

Latrabjarg (65829 0 N, 24832 0 W), but the species sampled

at each location was variable (figure 2). Likewise, birds were

sampled from three colonies in Scotland in 2001 (Fair Isle

(59832 0 N, 01839 0 W), Sumburgh Head (59851 0 N,

01816 0 W) and Gruney (60839 0 N, 01818 0 W)), and one in

Norway (Hornøya (70822 0 N, 31810 0 E)). At capture, a blood

sample of 0.5 ml was taken from the left ulnar vein using a
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Figure 2. Prevalence of adult birds with anti-Borrelia Ab, according to species and colony (Hrolfskrettur (HROL), Latrabjarg
(LATR), Grimsey (GRIM), Skrudur (SKRU), Fair Isle (FISL), Sumburgh Head (SUMB), Gruney (GRUN), and Hornøya
(HORN)). Grey sections indicate the prevalence of seropositive individuals. The number and prevalence of positive individuals
are indicated below each pie chart.
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sterile syringe rinsed with heparin. Blood samples were stored

in 1.5 ml tubes and centrifuged a few hours later. Plasma

samples were then separated, kept cool until the sampling

session was completed and then frozen at K208C until

immunological assays were performed.
(b) Serological analyses

Anti-Borrelia Ab levels in the plasma were determined using a

sandwich enzyme-linked immunosorbent assay (ELISA; kit

Elilyme G/M, Diagast). Because this kit was manufactured

for human use and was designed to recognize mammalian Ab,

we replaced the anti-IgG Ab of the kit by an anti-chicken IgY

Ab conjugated with peroxidase (Sigma A-9046, Sigma-

Aldrich). Samples were diluted to 1 : 100 with the dilution

buffer provided in the kit, the adequate dilution being

determined by preliminary testing. One hundred microlitres

of the diluted sample was then distributed into each well and

incubated for 45 min at 378C. After this period, the plates

were washed three times with TBE buffer. One hundred

microlitres of peroxidase-conjugated rabbit anti-chicken

IgG (dilution 1 : 750 in TBE buffer) was added and left

for 1h 30 min at room temperature. After washing, 100 ml of

peroxidase substrate (o-phenylenediamine dihydrochloride,

0.4 mg mlK1, Sigma) was added and left for 15 min at room

temperature. The colorimetric reaction was stopped using

50 ml of hydrochloric acid (HCl 1 M). Anti-Borrelia Ab levels

are expressed as the optic density (OD) of the resulting

solution (absorbance at 492 nm, read using an automatic
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ELISA reader; Victor3, Perkin Elmer). The OD provided us

with a relative measure of specific Ab concentration in the

plasma samples. The repeatability, calculated according to

Lessells & Boag (1987), of measurements on the same sample

from two different ELISA plates was high (94.1%, nZ41;

F40,41Z16.43).

We used immunoblots (Western blots) to determine the

positive threshold of the ELISA tests for each seabird species

and to analyse the repertoire of Borrelia antigens to which

individuals responded (figure 1). We performed immuno-

blots on samples from all three species on Grimsey and

Skrudur. Tests were performed on individuals starting with

the highest OD values and continuing down with lower

values until negative samples were obtained. Next, we

selected five samples from among the 10 lowest ELISA

OD values to confirm the negative status of the individuals.

This was done for all species except the common guillemot.

For this species, the prevalence of positive individuals

according to immunoblots was high even for low ELISA

values; we consequently tested all guillemot individuals from

Grimsey and Skrudur. Using the information from these two

colonies, we then calculated the positive ELISA threshold

for each species as the mean OD minus one standard

deviation of all individuals shown positive by immunoblot

tests. An individual was then considered positive if its OD

was above this threshold. We used the results of the

immunoblot test as a gold standard to evaluate the sensitivity

(i.e. the probability that the test was positive given that the



Table 1. Immunoblot band frequencies according to species and colony. (We also indicate Borrelia phylogroup frequencies
identified in ticks collected from different host species in the same colonies (Duneau et al. 2008).)

species
CG KT PF

bands (antigen) site GRIM SKRU GRIM SKRU GRIM SKRU

B. garinii Osp Ca 0.93 1.00 1.00 1.00 1.00 1.00
B. burgdorferi VlsEb 0.00 0.10 0.00 0.20 0.00 0.00
p100c 0.00 0.00 0.00 0.00 0.11 0.00
p58d 0.73 0.40 1.00 0.90 0.33 0.91
p43e 0.67 0.60 0.00 0.00 0.56 0.18
p39f 0.60 0.70 1.00 0.90 1.00 1.00
p30a 0.47 0.10 0.67 0.20 0.11 0.73
22 kD Osp Ca 0.60 0.70 1.00 0.90 0.78 0.82
p17a 0.33 0.00 0.67 0.20 0.33 0.55
p14g 0.93 0.70 0.33 0.10 0.56 0.64
number of seropositive individuals 15/30 10/33 3/31 10/32 9/33 11/30

Borrelia phylogroup
frequencies

group 1 0.37 0.16 0.25 0.40 0.00 0.14
group 2 0.62 0.83 0.74 0.60 1.00 0.85

aOuter surface membrane protein; bSurface lipoprotein; cProtoplasmic cylinder or flagellum associated; dFunction unknown; eAssociated with
infectivity; fMembrane associated; gInternal flagellin fragment.
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bird actually had Ab, as shown by a positive immunoblot

result) and the specificity (i.e. the probability that the

test was negative given that the bird had no Ab) of the

ELISA tests.

Immunoblot assays were performed using a commercial

kit (Western Blot Lyme IgGCVlsE, Meridian Bioscience).

These tests were based on the detection of Ab against the

following Borrelia antigens: p14, p17, 22 kD Osp C, p30,

p39, p 43, p58, p100, Borrelia garinii Osp C, B. burgdorferi

s. l. VlsE (table 1). As this kit was also manufactured for

human use, we replaced the anti-IgG of the kit by anti-

chicken IgY Ab conjugated with alkaline phosphatase

(Sigma A-9171, Sigma-Aldrich). Plasma samples were

used at a dilution of 1 : 100 and tests were incubated for

45 min at room temperature. The positive control provided

by the kit was used to determine band positions and as a

reference for band intensity. The repeatability of measure-

ments on the same sample from two different immunoblots

was high (94.5%, nZ100 (10 antigens for 10 samples);

F99,100Z35.05).

We analysed immunoblot strips using the public domain

IMAGEJ image program (US National Institutes of Health;

http://rsb.info.nih/ij/) and obtained a value for the intensity of

each band present. The intensity of the band reflects: (i) the

incubation time and technical parameters of the immunoblot

(controlled for by the systematic use of a human positive

control as a reference), (ii) the concentration of the anti-

chicken antibody (used in excess to avoid interspecific variation

due to a differential affinity for the antibody; see §3), and (iii)

the concentration of Ab specific to the antigen (band)

considered. A sample was declared positive if its immunoblot

revealed at least three bands more intense than the p41 band of

the positive control, as recommended by the kit manufacturer

(modified MIQ 12 2000 interpretative criteria; Wilske et al.

2000). Heterogeneity among Borrelia strains and the occur-

rence of cross-reacting Ab can complicate the comparability

and standardization of assay systems (Hauser et al. 1997).

However, given the criteria we used to declare a sample positive

(i.e. minimum of three bands) and the fact that the same

immunoblot kit was used for all species, we believe that the

immunoblot results obtained are conservative and can be used

for comparative purposes.
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(c) Borrelia phylogroup identification

In order to relate the presence of plasma Ab to Borrelia

infection of the local tick vectors, captured birds were

sampled for ticks. Approximately 30 ticks from as many

host birds were sampled in each colony for each species. Ticks

were tested for Borrelia spp. infection using a nested PCR

procedure for the amplification of a 309 bp region of the FlaB

gene. Positive amplifications were used to determine the

prevalence of Borrelia-infected ticks and the subsequent

sequences were analysed using a phylogenetic approach to

identify the different LB Borrelia spp. present in these areas

(see details in Duneau et al. 2008). In general, we could not

use the number of ticks collected from adult birds as an index

of the local exposure to ticks, because levels of infestation of

adult birds are highly variable and we are only able to detect a

limited part of the tick population, mostly engorging females

that have escaped preening.
(d) Statistical analyses

To investigate whether the prevalence of seropositive birds

was affected by species or colony, we used logistic regression

(proc catmod, SAS institute) with species and colony as

independent variables. We tested the interaction colony!

species for the colonies of Grimsey and Skrudur where

information on all the three species was available. We then

tested for a species effect in each colony separately and a

colony effect for each species.

Differences in immunoblot patterns among species and

colonies were examined using a principal component analysis

(PCA) on the band intensity scores. After analysis of the

Scree diagram (Quinn & Keough 2002), we kept only the first

two principal components that explained 33.0 and 15.0% of

the total variation. We then used a generalized linear model

(proc GLM, SAS) with colony, species and the interaction as

explanatory variables and the value of the first two PCA

principal components as dependent variables. To determine

whether immunoblot-banding patterns could be explained by

the genetic diversity of Borrelia spp., we analysed the

correlation between the mean values of each PCA axis and

the frequencies of each phylogroup in each colony and

species. We also performed the same analysis using immuno-

blot band frequencies.

http://rsb.info.nih/ij/
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3. RESULTS
(a) Prevalence

Positive thresholds for the ELISA tests (expressed as

optical density; see §2) of the different species were set as

0.73 (nZ25) for common guillemots (CG), 0.88 (nZ13)

for kittiwakes (KT) and 1.17 (nZ19) for puffins (PF).

Sensitivity and specificity were high for KT and PF

(sensitivity/specificity: KT 92.3%/95.0%; PF 84.2%/

92.8%), but the low number of negative immunoblots

for CG (5/63) inevitably induced lower specificity for this

species (sensitivity/specificity: 84.0%/60.0%).

The prevalence of Ab against Borrelia in adult seabirds

was on average higher for CG compared with KT and PF

(meanGs.e.: CG 77.1%G5.9, KT 18.6%G6.7, PF

22.6%G6.4; figure 2). There was nevertheless a signi-

ficant effect of the interaction between colony and species

on the prevalence of seropositive individuals (c2Z6.07,

d.f.Z2, pZ0.048); prevalence differed significantly

among species sampled on Grimsey, but not on Skrudur

(Grimsey:c2Z20.6, d.f.Z2, p!0.0001; Skrudur:c2Z2.54,

d.f.Z2, pZ0.27). Prevalence also differed among colonies

for CG and PF (CG: c2Z10.7, d.f.Z4, pZ0.029; PF:

c2Z12.1, d.f.Z4, pZ0.016), but was marginally non-

significant for KT (c2Z8.93, d.f.Z4, pZ0.062).
(b) Immunoblot-banding patterns

and Borrelia phylogroups

The first principal component of the immunoblot-

banding patterns reflects band intensity; all bands

contribute to this axis approximately to the same extent

as reflected by their x -values in figure 3. In other words,
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birds that responded strongly to one antigen had a

tendency to respond strongly to the others. The second

PCA axis reflects associations among certain antigens;

p58, p39, p30, p17 formed one group, a second group was

constituted by p14 and B. gar Osp C and a third by 22 kD

Osp C and p43 (figure 3). The correlation among bands

(especially p58, p39, p30 and p17) is also observable in

terms of immunoblot band frequencies for each species

and colony (table 1). The contribution of two bands,

B.b. VlsE and p100, to the first two axes was low as

reflected by the short length of the corresponding line on

the correlation circle and can be attributed to the low

frequency of birds with Ab against these antigens (figure 3;

table 1). Differences in band frequencies (table 1) and

results of the PCA illustrate the effects of colony and

species on immunoblot-banding patterns (colony!species

interaction on the first PCA component: F2,51Z4.23,

pZ0.02; on the second PCA component: F2,51Z8.06,

pZ0.0009; figures 1 and 4).

Phylogroup diversity of Borrelia detected in ticks was

characterized by two main clades associated with two

known Borrelia species, B. garinii (group 2) and Borrelia

lusitaniae (group 1; phylogeny not shown; see Duneau

et al. 2008). The majority of isolates were from group 2

(table 1). Most immunoblot-banding patterns could not

be explained by variation in Borrelia phylogroups

(Pearson’s correlation coefficient; K0.62!r!0.73;

0.09!p!0.97). As only two main clades could be

distinguished using the FlaB gene, this result is not

surprising. We would have required a strong effect to find

statistical significance for more bands.
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4. DISCUSSION
Serology, the detection of Ab against infectious agents, is a

useful and sensitive tool because it enables one to

determine both present and past exposures to pathogens.

Moreover, serological studies allow us to take the

vertebrate immune response into consideration when

trying to understand the ecology of pathogen–host

interactions (Frank 2002). In the Borrelia/tick/vertebrate

host system, selection driven by the immune system of

the different host species may play a key role in the spatio-

temporal structure of Lyme disease (Kurtenbach et al.

2002). Here, we investigated the marine cycle of LB

and explored the potential role played by three common

North Atlantic seabird species in the ecology and

epidemiology of B. burgdorferi s.l. using serological

information from a large number of individuals. The

qualitative results of the immunoblot tests allowed us to

account for a differential affinity of the anti-immunoglo-

bulin conjugate for the Ab of each species. We were then

able to determine the percentage of seropositive individ-

uals within different populations and species of the North

Atlantic. We found that the prevalence of anti-Borrelia Ab

in adult seabirds varied among colonies and among species

within colonies. Overall, common guillemots showed

higher seroprevalence than kittiwakes and puffins. We

next examined the immunoblot-banding patterns in two

colonies where all three seabird species were breeding

sympatrically and found that the patterns also differed

among locations and species. Finally, we tested for a

correlation between immunoblot-banding frequencies,

intensity and the presence of different Borrelia phylo-

groups previously determined in ticks sampled in these

same two colonies. No strong relationship was found at

the coarse scale considered.

(a) Interspecific variability in ELISA thresholds

Studies conducted on small mammals have highlighted

interspecific variability in the prevalence of anti-Borrelia

Ab. However, these studies used anti-mouse Ab to analyse

Ab levels for all the species examined without considering

the potential interspecific differences in the affinity of anti-

mouse Ab for the Ab of each species. In addition, the same

positive threshold value was used for all species, one based

on the mean value of mouse controls (Kurtenbach et al.

1994; Pawelczyk & Sinski 2000; Vostal & Zakovska 2003;

Stefancikova et al. 2004). This can be problematic because

different affinities can bias comparisons of seroprevalence

and these estimates are essential for evaluating the relative

importance of host diversity for Lyme disease ecology (e.g.

LoGiudice et al. 2003; Keesing et al. 2006).

In the present study, the use of a qualitative test

(immunoblot) enabled us to define a separate positive

threshold for each species for our quantitative test

(ELISA), and consequently to obtain a more accurate

estimate of seroprevalence in each population. Although

potential variability in the affinity of anti-chicken IgY Ab

for the Ab of the three seabird species could affect the

global intensity of immunoblot bands, it should not alter

the qualitative results of these tests (positive or negative)

based on the presence/absence of bands. Indeed, the

incubation of immunoblot strips was performed with a

high concentration of the anti-IgY conjugate (5- to 10-fold

the concentration used for the ELISA), and the positive/

negative result of the immunoblot is not proportional to
Proc. R. Soc. B (2008)
the quantity of the conjugate fixed by the Ab, as is the case

for the ELISA test. This means that even if the Ab of

certain species show a lower binding affinity, the excess

conjugate should still reveal a positive result.

Overall, the sensitivity and specificity of the ELISA

tests were reasonably good. However, we found that

guillemots showed a somewhat lower specificity (60%)

compared with the other two species. Although this could

lead to an overestimate of seropositive individuals, this

result is most probably linked to the low number of

individuals with negative immunoblots (5/63Z8%) in the

two colonies where immunoblots were performed on all

samples (Grimsey and Skrudur). Few negative individuals

reduce the precision of estimates and thus can reduce

the specificity of the test. However, the low number of

negative tests from these populations also suggests

that the risk of false positives is probably low and

therefore that the significantly higher seroprevalence

found in this species is not simply due to the low specifi-

city of the test.

(b) Interspecific variability in seroprevalence

Seroprevalence levels were higher on average for the

guillemots compared with the kittiwakes or puffins. This

could be explained by the recurrent nature of host race

formation in the tick vector I. uriae across its range,

coupled with a tendency for different tick races to host

Borrelia to different degrees (McCoy et al. 2001, 2005;

Duneau et al. 2008). Likewise, the dynamics of exposure

to ticks may differ according to the seabird species; some

birds nest in high-density breeding areas (guillemots)

compared with others (lower densities of individual

burrows for puffins or nests for kittiwakes). Host-related

variability in exposure to ticks may then affect exposure to

Borrelia spp. In a previous study, the prevalence and

diversity of Borrelia spirochetes were examined in ticks

from the same seabird species at the same series of

locations (Duneau et al. 2008). Interestingly, this study

revealed a similar prevalence of LB Borrelia spp. in ticks

sampled from the different seabird species (puffin

ticks 28.9%, kittiwake ticks 27.3%, guillemot ticks

26.0% in the colonies of Skrudur and Grimsey). This

contrasts with the higher seroprevalence level we found for

guillemots compared with the other species and suggests

either host-associated variability in tick exposure or

re-exposure, or a differential capacity among species to

mount and maintain an immune response. Indeed, using

experimental infections, Kurtenbach et al. (1994) showed

different transmission rates of Borrelia to different small

mammal species via ticks. Likewise, Nunn et al. (2006)

found that only guillemots had neutralizing Ab against

Great Island virus, even though both guillemots and

kittiwakes were infested by the infected ticks. Owing to the

nesting characteristics of guillemots, this species may

have evolved a more efficient capacity to control parasite

attacks via its immune response (Pal & Fikrig 2003; Attie

et al. 2007).

Interannual environmental variation, for example in

resource availability, could also differentially affect the

different seabird species (Sandvik et al. 2005) and may

alter the dynamics of disease cycles via effects on

host immunity and parasitaemia (Gylfe et al. 2000). A

longitudinal study of the dynamics of antibody levels

against LB Borrelia spp. in breeding adult kittiwakes
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nevertheless has shown that antibody levels and immuno-

blot profiles are highly persistent between successive years

(Staszewski et al. 2007). Experimental manipulation of

the immune system of the different hosts (e.g. immuno-

suppression) and controlled pathogen exposure could

thus complement our understanding of the role of the

immune system in the interspecific variability observed

and the potential effect of environmental variability on

this response.

(c) Colony-associated variability in seroprevalence

The spatial dimension of host–parasite interactions has

been relatively neglected until recently (Thomas et al.

2005), probably because traditional parasitology has

focused more on detailed and/or mechanistic studies.

However, spatial variability is a key aspect required for

predicting exposure to zoonotic diseases (Randolph et al.

2002). For example, in domestic animals such as goats

and sheep, the proportion of seropositive individuals

against B. burgdorferi s. l. is approximately 20% across

various countries (see Travnicek et al. 2002 for review),

but can range from 5 to 62% according to habitat type

(mountains versus plains). Similarly, a variety of studies on

small mammals have found that natural seropositivity

against B. burgdorferi s. l. varies according to location

(for example, from 0 to 20% among regions; Stefancikova

et al. 2004). In our study, seroprevalence varied accord-

ing to colony, ranging from 57.6 to 93.3% for guillemots,

0 to 41% for kittiwakes and 6.7 to 40.0% for puffins.

These results show that LB spirochetes are widespread

and that spatial variation in prevalence exists. In general,

these patterns could be linked to heterogeneity in bird

populations with respect to parasite exposure, suscep-

tibility and/or parasite strain variability. In the case of

Borrelia spp. in the marine system, the latter hypothesis is

not supported based on our current findings as there was

no clear indication of a link between the immunological

profiles and the presence of different Borrelia phylogroups

within populations. However, we are currently conducting

more detailed genetic analyses on B. garinii isolates, this

group being one of the most heterogeneous of all Lyme

disease spirochetes; these data may help reveal a potential

link between the strain variability and the observed

variability in the immune response of the birds.

(d) Species- and colony-associated variability

in immunoblot patterns

The immunoblot tests enabled us to partially characterize

the immunological profile of the Borrelia antigens against

which Ab were produced (Hauser et al. 1998; Pachner

et al. 2002). Species- and colony-associated variability in

seroprevalence was mirrored by immunoblot-banding

patterns, where heterogeneity in the global intensity of

the bands (first component) and in the antigens targeted

by Ab (second component) differed among seabird species

and colonies. The factors that might affect exposure to

Borrelia spp. or the ability to mount an immune response

have been discussed above to explain spatial and host

heterogeneity in seroprevalence. The same factors are

likely to affect the repertoire of antigens against which

Ab are produced. This repertoire depends mainly on two

factors: the history of past antigen exposure and the

response elicited within the host to different antigens.

The repertoire of antigens against which Ab have been
Proc. R. Soc. B (2008)
produced and the factors likely to affect it are important to

consider because they will determine the selective

pressures imposed on parasites and thus will shape the

changing patterns of Borrelia spp. within populations

(Frank 2002). More detailed tests that consider a wider

range of populations could enable us to test this hypothesis

and to clarify the potential links between different specific

Ab and variability in Borrelia spp. isolates.

Here we have shown that the prevalence and the

repertoire of anti-Borrelia Ab in positive individuals vary

among seabird species and locations within the North

Atlantic. These results can have important implications

for both the global epidemiology of LB and the evolution

of these spirochetes. In particular, the host specificity of

the tick vector and the different life-history characteristics

of the diverse seabird species involved may result in

different transmission patterns at different spatial scales.

Similarly, these aspects could affect the selection patterns

generating novel genetic variants of the pathogen that

could then be transferred to terrestrial disease cycles.

Understanding the role of birds and the marine LB cycle

in the maintenance and periodic (re)-emergence of

Borrelia spp. will ultimately rely on the effective com-

bination of phylogenetic analyses of pathogen diversity

with more ecological approaches that consider the

potential role of different avian hosts.

All work with seabirds was made in accordance with standard
animal care protocols and approved by the Ethical Commit-
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Institute of Natural History and the Norwegian Animal
Research Authority.
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